Mild cognitive impairment is common in nondemented Parkinson’s disease (PD) patients and may be a harbinger of dementia. In view of its importance, the Movement Disorder Society commissioned a task force to delineate diagnostic criteria for mild cognitive impairment in PD. The proposed diagnostic criteria are based on a literature review and expert consensus. This article provides guidelines to characterize the clinical syndrome and methods for its diagnosis. The criteria will require validation, and possibly refinement, as additional research improves our understanding of the epidemiology, presentation, neurobiology, assessment, and long-term course of this clinical syndrome. These diagnostic criteria will support future research efforts to identify at the earliest stage those PD patients at increased risk of progressive cognitive decline and dementia who may benefit from clinical interventions at a predementia stage.
The dentate gyrus (DG) of the mammalian hippocampus is hypothesized to mediate pattern separation-the formation of distinct and orthogonal representations of mnemonic information-and also undergoes neurogenesis throughout life. How neurogenesis contributes to hippocampal function is largely unknown. Using adult mice in which hippocampal neurogenesis was ablated, we found specific impairments in spatial discrimination with two behavioral assays: (i) a spatial navigation radial arm maze task and (ii) a spatial, but non-navigable, task in the mouse touch screen. Mice with ablated neurogenesis were impaired when stimuli were presented with little spatial separation, but not when stimuli were more widely separated in space. Thus, newborn neurons may be necessary for normal pattern separation function in the DG of adult mice.
SummaryUnderstanding human embryonic ventral midbrain is of major interest for Parkinson’s disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.
Cognitive abnormalities are common in Parkinson's disease, with important social and economic implications. Factors influencing their evolution remain unclear but are crucial to the development of targeted therapeutic strategies. We have investigated the development of cognitive impairment and dementia in Parkinson's disease using a longitudinal approach in a population-representative incident cohort (CamPaIGN study, n = 126) and here present the 5-year follow-up data from this study. Our previous work has implicated two genetic factors in the development of cognitive dysfunction in Parkinson's disease, namely the genes for catechol-O-methyltransferase (COMT Val(158)Met) and microtubule-associated protein tau (MAPT) H1/H2. Here, we have explored the influence of these genes in our incident cohort and an additional cross-sectional prevalent cohort (n = 386), and investigated the effect of MAPT H1/H2 haplotypes on tau transcription in post-mortem brain samples from patients with Lewy body disease and controls. Seventeen percent of incident patients developed dementia over 5 years [incidence 38.7 (23.9-59.3) per 1000 person-years]. We have demonstrated that three baseline measures, namely, age >or=72 years, semantic fluency less than 20 words in 90 s and inability to copy an intersecting pentagons figure, are significant predictors of dementia risk, thus validating our previous findings. In combination, these factors had an odds ratio of 88 for dementia within the first 5 years from diagnosis and may reflect the syndrome of mild cognitive impairment of Parkinson's disease. Phonemic fluency and other frontally based tasks were not associated with dementia risk. MAPT H1/H1 genotype was an independent predictor of dementia risk (odds ratio = 12.1) and the H1 versus H2 haplotype was associated with a 20% increase in transcription of 4-repeat tau in Lewy body disease brains. In contrast, COMT genotype had no effect on dementia, but a significant impact on Tower of London performance, a frontostriatally based executive task, which was dynamic, such that the ability to solve this task changed with disease progression. Hence, we have identified three highly informative predictors of dementia in Parkinson's disease, which can be easily translated into the clinic, and established that MAPT H1/H1 genotype is an important risk factor with functional effects on tau transcription. Our work suggests that the dementing process in Parkinson's disease is predictable and related to tau while frontal-executive dysfunction evolves independently with a more dopaminergic basis and better prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.