pharmacology of robenacoxib: a novel selective inhibitor of cyclooxygenase-2. J. vet. Pharmacol. Therap. 32,[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17] This manuscript reports the results of preclinical studies in the rat with robenacoxib, a novel selective cyclooxygenase (COX)-2 inhibitor. Robenacoxib selectively inhibited COX-2 in vitro as evidenced from COX-1:COX-2 IC 50 ratios of 27:1 in purified enzyme preparations and >967:1 in isolated cell assays. Binding to COX-1 was rapid and readily reversible (dissociation t 1 ⁄ 2 << 1 min), whilst COX-2 binding was slowly reversible (t 1 ⁄ 2 = 25 min). In vivo, robenacoxib inhibited PGE 2 production (an index of COX-2 inhibition) in lipopolysaccharide (LPS)-stimulated air pouches (ID 50 0.3 mg ⁄ kg) and for at least 24 h in zymosan-induced inflammatory exudate (at 2 mg ⁄ kg). Robenacoxib was COX-1 sparing, as it inhibited serum TxB 2 synthesis ex vivo (an index of COX-1 inhibition) only at very high doses (100 mg ⁄ kg but not at 2-30 mg ⁄ kg). Robenacoxib inhibited carrageenan-induced paw oedema (ID 50 0.40-0.48 mg ⁄ kg), LPS-induced fever (ID 50 1.1 mg ⁄ kg) and Randall-Selitto pain (10 mg ⁄ kg). Robenacoxib was highly bound to plasma protein (99.9% at 50 ng ⁄ mL in vitro). After intravenous dosing, clearance was 2.4 mL ⁄ min ⁄ kg and volume of distribution at steady-state was 306 mL ⁄ kg. Robenacoxib was preferentially distributed into inflammatory exudate; the AUC for exudate was 2.9 times higher than for blood and the MRT in exudate (15.9 h) was three times longer than in blood (5.3 h). Robenacoxib produced significantly less gastric ulceration and intestinal permeability as compared with the reference nonsteroidal anti-inflammatory drug (NSAID), diclofenac, and did not inhibit PGE 2 or 6-keto PGF 1a concentrations in the stomach and ileum at 30 mg ⁄ kg. Robenacoxib also had no relevant effects on kidney function at 30 mg ⁄ kg. In summary, results of preclinical studies in rats studies suggest that robenacoxib has an attractive pharmacological profile for potential use in the intended target species, cats and dogs.(Paper
Three cyclophilin inhibitors (DEBIO-025, SCY635, and NIM811) are currently in clinical trials for hepatitis C therapy. The mechanism of action of these, however, is not completely understood. There are at least 16 cyclophilins expressed in human cells which are involved in a diverse set of cellular processes. Large-scale siRNA experiments, chemoproteomic assays with cyclophilin binding compounds, and mRNA profiling of HCV replicon containing cells were used to identify the cyclophilins that are instrumental to HCV replication. The previously reported cyclophilin A was confirmed and additional cyclophilin containing pathways were identified. Together, the experiments provide strong evidence that NIM811 reduces viral replication by inhibition of multiple cyclophilins and pathways with protein trafficking as the most strongly and persistently affected pathway.
1 This manuscript presents the preclinical profile of lumiracoxib, a novel cyclooxygenase-2 (COX-2) selective inhibitor. 2 Lumiracoxib inhibited purified COX-1 and COX-2 with K i values of 3 and 0.06 mM, respectively. In cellular assays, lumiracoxib had an IC 50 of 0.14 mM in COX-2-expressing dermal fibroblasts, but caused no inhibition of COX-1 at concentrations up to 30 mM (HEK 293 cells transfected with human COX-1). 3 In a human whole blood assay, IC 50 values for lumiracoxib were 0.13 mM for COX-2 and 67 mM for COX-1 (COX-1/COX-2 selectivity ratio 515). 4 Lumiracoxib was rapidly absorbed following oral administration in rats with peak plasma levels being reached between 0.5 and 1 h. 5 Ex vivo, lumiracoxib inhibited COX-1-derived thromboxane B 2 (TxB 2 ) generation with an ID 50 of 33 mg kg À1, whereas COX-2-derived production of prostaglandin E 2 (PGE 2 ) in the lipopolysaccharidestimulated rat air pouch was inhibited with an ID 50 value of 0.24 mg kg À1 . 6 Efficacy of lumiracoxib in rat models of hyperalgesia, oedema, pyresis and arthritis was dosedependent and similar to diclofenac. However, consistent with its low COX-1 inhibitory activity, lumiracoxib at a dose of 100 mg kg À1 orally caused no ulcers and was significantly less ulcerogenic than diclofenac (Po0.05). 7 Lumiracoxib is a highly selective COX-2 inhibitor with anti-inflammatory, analgesic and antipyretic activities comparable with diclofenac, the reference NSAID, but with much improved gastrointestinal safety. British Journal of Pharmacology (2005) 144, 538-550. doi:10.1038/sj.bjp.0706078 Published online 17 January 2005 Keywords: Lumiracoxib; COX-2; cyclooxygenase-2 selective inhibitor; preclinical Abbreviations: AUC, area-under-curve of the concentration vs time curve; C max , maximum drug plasma concentration; CFA, complete Freund's adjuvant; 51 Cr-EDTA, chromium-51 labelled EDTA; COX, cyclooxygenase; D 30 , dose at which 30% inhibition was achieved; DMSO, dimethyl sulphoxide; F 0 , fraction of uninhibited enzyme at equilibrium; GI, gastrointestinal; HEK, human embryonic kidney; IL-1, interleukin-1; K i , inhibitor constant; k on , second-order rate constant representing speed at which an inhibitor binds to an enzyme; I, inhibitor concentration; LC/MS/MS, liquid chromatography/mass spectrometry/mass spectrometry; LPS, lipopolysaccharide; NSAID, nonsteroidal anti-inflammatory drug; O 2 , oxygen; PGE 2 , prostaglandin E 2 ; s, arachidonic acid concentration; t 1/2 , half-life; t opt , time to optimal velocity; TxB 2 , thromboxane B 2 ; V 0 , velocity in the absence of inhibitor; V obs , observed velocity in the presence of inhibitor; V opt , highest observed O 2 consumption velocity; V max , Michaelis-Menten constant for the maximal calculated velocity
The current standard of care for hepatitis C virus (HCV) infection, pegylated alpha interferon in combination with ribavirin, has a limited response rate and adverse side effects. Drugs targeting viral proteins are in clinical development, but they suffer from the development of high viral resistance. The inhibition of cellular proteins that are essential for viral amplification is thought to have a higher barrier to the emergence of resistance. Three cyclophilin inhibitors, the cyclosporine analogs DEBIO-025, SCY635, and NIM811, have shown promising results for the treatment of HCV infection in early clinical trials. In this study, we investigated the frequency and mechanism of resistance to cyclosporine (CsA), NIM811, and a structurally unrelated cyclophilin inhibitor, SFA-1, in replicon-containing Huh7 cells. Cross-resistance between all clones was observed. NIM811-resistant clones were selected only after obtaining initial resistance to either CsA or SFA-1. The time required to select resistance against cyclophilin inhibitors was significantly longer than that required for resistance selection against viral protein inhibitors, and the achievable resistance level was substantially lower. Resistance to cyclophilin inhibitors was mediated by amino acid substitutions in NS3, NS5A, and NS5B, with NS5A mutations conferring the majority of resistance. Mutation D320E in NS5A mediated most of the resistance conferred by NS5A. Taken together, the results indicate that there is a very low frequency and level of resistance to cyclophilin-binding drugs mediated by amino acid substitutions in three viral proteins. The interaction of cyclophilin with NS5A seems to be the most critical, since the NS5A mutations have the largest impact on resistance.Hepatitis C virus (HCV) poses a serious medical problem, with more than 170 million people infected worldwide (27). Chronic HCV infection increases the risk of hepatocellular carcinoma and results in progressive liver disease and liver failure in approximately 30% of infected individuals (2, 13). HCV infection is the leading indication for liver transplantation in the United States, and HCV reinfection occurs in nearly all cases of chronically infected HCV patients receiving liver transplants. The effectiveness of the current standard therapy (pegylated alpha interferon [PEG-IFN-␣] and ribavirin) is genotype dependent. The response rate in genotype 1 patients, the most prevalent genotype in North America, Europe, and Japan, is only 48%, whereas in genotype 2 and 3 patients there is an 88% response rate (4). In view of these limitations to the current standard of care, the development of alternative, more effective treatment regimens is urgently needed.HCV is a positive-, single-stranded RNA virus with a genome approximately 9.6 kb in length that encodes a single polyprotein, which subsequently is cleaved into 10 distinct viral proteins. The NS3-4A serine protease and the NS5B RNAdependent RNA polymerase are the major foci of current anti-HCV drug discovery efforts. Both enzymes a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.