Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphoma, is clinically heterogeneous: 40% of patients respond well to current therapy and have prolonged survival, whereas the remainder succumb to the disease. We proposed that this variability in natural history reflects unrecognized molecular heterogeneity in the tumours. Using DNA microarrays, we have conducted a systematic characterization of gene expression in B-cell malignancies. Here we show that there is diversity in gene expression among the tumours of DLBCL patients, apparently reflecting the variation in tumour proliferation rate, host response and differentiation state of the tumour. We identified two molecularly distinct forms of DLBCL which had gene expression patterns indicative of different stages of B-cell differentiation. One type expressed genes characteristic of germinal centre B cells ('germinal centre B-like DLBCL'); the second type expressed genes normally induced during in vitro activation of peripheral blood B cells ('activated B-like DLBCL'). Patients with germinal centre B-like DLBCL had a significantly better overall survival than those with activated B-like DLBCL. The molecular classification of tumours on the basis of gene expression can thus identify previously undetected and clinically significant subtypes of cancer.
Non-Hodgkin's lymphoma affecting the stomach, but not other sites, is associated with previous H. pylori infection. A causative role for the organism is plausible, but remains unproved.
Lymphocytes that are responsible for regional (tissue-specific) immunity home from the blood to the intestines, inflamed skin or other sites through a multistep process involving recognition of vascular endothelial cells and extravasation. Chemoattractant cytokine molecules known as chemokines regulate this lymphocyte traffic, in part by triggering arrest (stopping) of lymphocytes rolling on endothelium. Here we show that many systemic memory T cells in blood carry the chemokine receptor CCR4 and therefore respond to its ligands, the chemokines TARC and MDC. These cells include essentially all skin-homing cells expressing the cutaneous lymphocyte antigen and a subset of other systemic memory lymphocytes; however, intestinal (alpha4beta7+) memory and naive T cells respond poorly. Immunohistochemistry reveals anti-TARC reactivity of venules and infiltration of many CCR4+ lymphocytes in chronically inflamed skin, but not in the gastrointestinal lamina propria. Moreover, TARC induces integrin-dependent adhesion of skin (but not intestinal) memory T cells to the cell-adhesion molecule ICAM-1, and causes their rapid arrest under physiological flow. Our results suggest that CCR4 and TARC are important in the recognition of skin vasculature by circulating T cells and in directing lymphocytes that are involved in systemic as opposed to intestinal immunity to their target tissues.
Neoplasms of histiocytes and dendritic cells are rare, and their phenotypic and biological definition is incomplete. Seeking to identify antigens detectable in paraffin-embedded sections that might allow a more complete, rational immunophenotypic classification of histiocytic/dendritic cell neoplasms, the International Lymphoma Study Group (ILSG) stained 61 tumours of suspected histiocytic/dendritic cell type with a panel of 15 antibodies including those reactive with histiocytes (CD68, lysozyme (LYS)), Langerhans cells (CD1a), follicular dendritic cells (FDC: CD21, CD35) and S100 protein. This analysis revealed that 57 cases (93%) fit into four major immunophenotypic groups (one histiocytic and three dendritic cell types) utilizing six markers: CD68, LYS, CD1a, S100, CD21, and CD35. The four (7%) unclassified cases were further classifiable into the above four groups using additional morphological and ultrastructural features. The four groups then included: (i) histiocytic sarcoma (n=18) with the following phenotype: CD68 (100%), LYS (94%), CD1a (0%), S100 (33%), CD21/35 (0%). The median age was 46 years. Presentation was predominantly extranodal (72%) with high mortality (58% dead of disease (DOD)). Three had systemic involvement consistent with 'malignant histiocytosis'; (ii) Langerhans cell tumour (LCT) (n=26) which expressed: CD68 (96%), LYS (42%), CD1a (100%), S100 (100%), CD21/35 (0%). There were two morphological variants: cytologically typical (n=17) designated LCT; and cytologically malignant (n=9) designated Langerhans cell sarcoma (LCS). The LCS were often not easily recognized morphologically as LC-derived, but were diagnosed based on CD1a staining. LCT and LCS differed in median age (33 versus 41 years), male:female ratio (3.7:1 versus 1:2), and death rate (31% versus 50% DOD). Four LCT patients had systemic involvement typical of Letterer-Siwe disease; (iii) follicular dendritic cell tumour/sarcoma (FDCT) (n=13) which expressed: CD68 (54%), LYS (8%), CD1a (0%), S100 (16%), FDC markers CD21/35 (100%), EMA (40%). These patients were adults (median age 65 years) with predominantly localized nodal disease (75%) and low mortality (9% DOD); (iv) interdigitating dendritic cell tumour/sarcoma (IDCT) (n=4) which expressed: CD68 (50%), LYS (25%), CD1a (0%), S100 (100%), CD21/35 (0%). The patients were adults (median 71 years) with localized nodal disease (75%) without mortality (0% DOD). In conclusion, definitive immunophenotypic classification of histiocytic and accessory cell neoplasms into four categories was possible in 93% of the cases using six antigens detected in paraffin-embedded sections. Exceptional cases (7%) were resolvable when added morphological and ultrastructural features were considered. We propose a classification combining immunophenotype and morphology with five categories, including Langerhans cell sarcoma. This simplified scheme is practical for everyday diagnostic use and should provide a framework for additional investigation of these unusual neoplasms.
Phenotypic analysis of hematopoietic stem and progenitor cells (HSCs) has been an invaluable tool in defining the biology of stem cell populations. We have recently described the production of AC133, a monoclonal antibody (MoAb) that binds to a novel cell surface antigen present on a CD34bright subset of human HSCs. This antigen is a glycosylated protein with a molecular weight of 120 kD. Here, we report the molecular cloning of a cDNA encoding this antigen and show that it does not share homology with any previously described hematopoietic or other cell surface antigen(s). The AC133 polypeptide has a predicted size of 97 kD and contains five-transmembrane (5-TM) domains with an extracellular N-terminus and a cytoplasmic C-terminus. Whereas the expression of tetraspan (4-TM) and 7-TM molecules is well documented on mature and immature hematopoietic cells and leukocytes, this 5-TM type of structure containing two large (255–amino acid [aa] and 290-aa) extracellular loops is unique and does not share sequence homology with any known multi-TM family members. Expression of this protein appears limited to bone marrow in normal tissue by immunohistochemical staining; however, Northern analysis suggests that the mRNA transcript is present in a variety of tissues such as the kidney, pancreas, placenta, and fetal liver. The AC133 antigen is also expressed on subsets of CD34+ leukemias, suggesting that it may be an important early marker for HSCs, as well as the first described member of a new class of TM receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.