The chemokine receptor 5 (CKR5) protein serves as a secondary receptor on CD4(+) T lymphocytes for certain strains of human immunodeficiency virus-type 1 (HIV-1). The CKR5 structural gene was mapped to human chromosome 3p21, and a 32-base pair deletion allele (CKR5Delta32) was identified that is present at a frequency of approximately0.10 in the Caucasian population of the United States. An examination of 1955 patients included among six well-characterized acquired immunodeficiency syndrome (AIDS) cohort studies revealed that 17 deletion homozygotes occurred exclusively among 612 exposed HIV-1 antibody-negative individuals (2.8 percent) and not at all in 1343 HIV-1-infected individuals. The frequency of CKR5 deletion heterozygotes was significantly elevated in groups of individuals that had survived HIV-1 infection for more than 10 years, and, in some risk groups, twice as frequent as their occurrence in rapid progressors to AIDS. Survival analysis clearly shows that disease progression is slower in CKR5 deletion heterozygotes than in individuals homozygous for the normal CKR5 gene. The CKR5Delta32 deletion may act as a recessive restriction gene against HIV-1 infection and may exert a dominant phenotype of delaying progression to AIDS among infected individuals.
Natural killer (NK) cells provide defense in the early stages of the innate immune response against viral infections by producing cytokines and causing cytotoxicity. The killer immunoglobulin-like receptors (KIRs) on NK cells regulate the inhibition and activation of NK-cell responses through recognition of human leukocyte antigen (HLA) class I molecules on target cells KIR and HLA loci are both highly polymorphic, and some HLA class I products bind and trigger cell-surface receptors specified by KIR genes. Here we report that the activating KIR allele KIR3DS1, in combination with HLA-B alleles that encode molecules with isoleucine at position 80 (HLA-B Bw4-80Ile), is associated with delayed progression to AIDS in individuals infected with human immunodeficiency virus type 1 (HIV-1). In the absence of KIR3DS1, the HLA-B Bw4-80Ile allele was not associated with any of the AIDS outcomes measured. By contrast, in the absence of HLA-B Bw4-80Ile alleles, KIR3DS1 was significantly associated with more rapid progression to AIDS. These observations are strongly suggestive of a model involving an epistatic interaction between the two loci. The strongest synergistic effect of these loci was on progression to depletion of CD4(+) T cells, which suggests that a protective response of NK cells involving KIR3DS1 and its HLA class I ligands begins soon after HIV-1 infection.
To define predictors of survival time in late human immunodeficiency virus type 1 (HIV-1) disease, long- and short-duration survivors were studied after their CD4+ T cells fell to =50/mm3. Immune activation of CD4+ and CD8+ T cells, as measured by elevated cell surface expression of CD38 antigen, was strongly associated with shorter subsequent survival (P=.002). The naive CD45RA+CD62L+ T cell reserve was low in all subjects and did not predict survival (P=.34 for CD4+ and.08 for CD8+ cells). Higher virus burden correlated with CD8+ but not CD4+ cell activation and, after correcting for multiple comparisons, was not associated with shorter survival (P=.02). All of the patients' viruses used CCR5, CXCR4, or both, and coreceptor usage did not predict survival (P=. 27). Through mechanisms apparently unrelated to higher virus burden, immune activation is a major determinant of survival in advanced HIV-1 disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.