A series of benzofuran derivatives have been identified as inhibitors of fibril formation in the beta-amyloid peptide. The activity of these compounds has been assessed by a novel fibril-formation-specific immunoassay and for their effects on the production of a biologically active fibril product. The inhibition afforded by the compounds seems to be associated with their binding to beta-amyloid, as identified by scintillation proximity binding assay. Binding assays and NMR studies also indicate that the inhibition is associated with self-aggregation of the compounds. There is a close correlation between the activity of the benzofurans as inhibitors of fibril formation and their ability to bind to beta-amyloid. Non-benzofuran inhibitors of the fibril formation process do not seem to bind to the same site on the beta-amyloid molecule as the benzofurans. Thus a specific recognition site might exist for benzofurans on beta-amyloid, binding to which seems to interfere with the ability of the peptide to form fibrils.
One of the major pathological features of Alzheimer's disease is the deposition of beta-amyloid peptide (Abeta). Cellular toxicity has been shown to be associated with fibrillar forms of Abeta; preventing this fibril formation is therefore viewed as a possible method of slowing disease progression in Alzheimer's disease. With the use of a series of tetracyclic and carbazole-type compounds as inhibitors of Abeta fibril formation, we here describe a number of common structural features that seem to be associated with the inhibitory properties of these agents. Compounds such as carvedilol, rolitetracycline and daunomycin, which are shown to inhibit Abeta fibril formation, also prevent the formation of species of peptide that demonstrate biological activity in a human neuroblastoma cell line. Molecular modelling data suggest that these compounds have in common the ability to adopt a specific three-dimensional pharmacophore conformation that might be essential for binding to Abeta and preventing it from forming fibrils. Understanding such drug-peptide interactions might aid the development of disease-modifying agents.
The synthesis of a series of N-phosphonalkyl dipeptides 6 is described. Syntheses were devised that allowed the preparation of single diastereoisomers and the assignment of stereochemistry. The compounds were evaluated in vitro for their ability to inhibit the degradation of radiolabeled collagen by purified human lung fibroblast collagenase. Several of the compounds were potent collagenase inhibitors and were at least 10-fold more potent than their corresponding N-carboxyalkyl analogues. Activity was lost when the phosphonic acid group P(O)(OH)2 was replaced by the phosphinic acid groups P(O)(H)(OH) and P(O)(Me)(OH). At the P1 position, (R)- or (S)-alkyl groups, especially ethyl and methyl (e.g., 12a,b, 52a,b, and 53a,b), or an (R)-phenethyl moiety (55a) conferred high potency (IC50 values in the range 0.23-0.47 microM). (S)-Stereochemistry was preferred for the P1' isobutyl side chain. Structure-activity relationships were also investigated at the P2' site, and interestingly, compounds with basic side chains, such as the guanidine 57a, were equipotent with more lipophilic compounds, such as 52a. As with other series of collagenase inhibitors, potency was enhanced by introducing bicyclic aromatic P2' substituents. The most potent phosphonic acid of the series was the bicyclic aromatic P2' tryptophan analogue 59a (IC50 0.05 microM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.