Zika virus (ZIKV), a mosquito-borne flavivirus with homology to Dengue virus (DENV), has become a public health emergency. By characterizing memory lymphocytes from ZIKV-infected patients, we dissected ZIKV-specific and DENV-cross-reactive immune responses. Antibodies to nonstructural protein 1 (NS1) were largely ZIKV-specific and were used to develop a serological diagnostic tool. In contrast, antibodies against E protein domain I/II (EDI/II) were cross-reactive and, although poorly neutralizing, potently enhanced ZIKV and DENV infection in vitro and lethally enhanced DENVdisease in mice. Memory Tcells against NS1 or E proteins were poorly cross-reactive, even in donors preexposed to DENV. The most potent neutralizing antibodies were ZIKV-specific and targeted EDIII or quaternary epitopes on infectious virus. An EDIII-specific antibody protected mice from lethal ZIKV infection, illustrating the potential for antibody-based therapy.A fter its introduction into Brazil in 2015, Zika virus (ZIKV) has spread rapidly, and in February 2016, the World Health Organization (WHO) declared it a Public Health Emergency of International Concern (1-3). The main route of ZIKV infection is through bites by Aedes mosquitos, but the virus may also be sexually (4) and vertically transmitted (5). Although most of the ZIKV infections are asymptomatic or cause only mild symptoms, there is evidence that ZIKV infection can lead to neurological complications, such as Guillain-Barré syndrome in adults (6) and congenital birth defects, including microcephaly in the developing fetus (5,7,8), likely through its ability to infect human neural progenitor cells (9).Whereas flavivirus envelope (E) proteins mediate fusion and are the main target of neutralizing antibodies, the nonstructural protein 1 (NS1) is secreted by infected cells and is involved in immune evasion and pathogenesis (10). Two recent studies showed a high level of structural similarity between the E protein of ZIKV and that of other flaviviruses-such as dengue virus (DENV), yellow fever virus (YFV), and West Nile virus (WNV)-but also revealed distinct features that may be related to the ZIKV neurotropism (11,12). Similarly, the structural analysis of ZIKV NS1 revealed conserved features with NS1 of other flaviviruses, although with different electrostatic characteristics (13).A phenomenon that is characteristic of certain flaviviruses is the disease-enhancing activity of cross-reactive antibodies elicited by previous infections by heterologous viruses, termed antibodydependent enhancement (ADE). In the case of DENV, for which four serotypes are known, there is epidemiological evidence that a primary infection protects from reinfection with the same serotype but represents a risk factor for the development of severe disease upon reinfection with a different serotype (14). The exacerbated disease is triggered by E-and prM-specific antibodies that fail to neutralize the incoming virus but instead enhance its capture by Fc receptor-expressing (FcR + ) cells, leading to enhanced vi...
In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Background The largest West African monkeypox outbreak began September 2017, in Nigeria. Four individuals traveling from Nigeria to the UK (2), Israel, and Singapore became the first human monkeypox cases exported from Africa, and a related nosocomial transmission event in the UK became the first confirmed human-to-human monkeypox transmission event outside of Africa. Methods Epidemiological and molecular data for exported and Nigerian cases were analyzed jointly to better understand the exportations in the temporal and geographic context of the outbreak. Results Isolates from all travelers and a Bayelsa case shared a most recent common ancestor and traveled to Bayelsa, Delta, or Rivers states. Genetic variation for this cluster was lower than would be expected from a random sampling of genomes from this outbreak, but data did not support direct links between travelers. Conclusions Monophyly of exportation cases and the Bayelsa sample, along with the intermediate levels of genetic variation suggest a small pool of related isolates is the likely source for the exported infections. This may be the result of the level of genetic variation present in monkeypox isolates circulating within the contiguous region of Bayelsa, Delta, and Rivers states, or another more restricted, yet unidentified source pool.
Zika virus (ZIKV) is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129) mice and the parent strain (129Sv/Ev) after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals.
Analysis of 179 new Ebola virus sequences from patient samples collected in Guinea between March 2014 and January 2015 shows how different lineages evolved and spread in West Africa. Supplementary information The online version of this article (doi:10.1038/nature14594) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.