Emotion recognition in conversations is crucial for the development of empathetic machines. Present methods mostly ignore the role of inter-speaker dependency relations while classifying emotions in conversations. In this paper, we address recognizing utterance-level emotions in dyadic conversational videos. We propose a deep neural framework, termed conversational memory network, which leverages contextual information from the conversation history. The framework takes a multimodal approach comprising audio, visual and textual features with gated recurrent units to model past utterances of each speaker into memories. Such memories are then merged using attention-based hops to capture inter-speaker dependencies. Experiments show an accuracy improvement of 3−4% over the state of the art.
Emotion recognition in conversations is crucial for building empathetic machines. Current work in this domain do not explicitly consider the inter-personal influences that thrive in the emotional dynamics of dialogues. To this end, we propose Interactive COnversational memory Network (ICON), a multimodal emotion detection framework that extracts multimodal features from conversational videos and hierarchically models the selfand interspeaker emotional influences into global memories. Such memories generate contextual summaries which aid in predicting the emotional orientation of utterance-videos. Our model outperforms state-of-the-art networks on multiple classification and regression tasks in two benchmark datasets.
Sarcasm is often expressed through several verbal and non-verbal cues, e.g., a change of tone, overemphasis in a word, a drawn-out syllable, or a straight looking face. Most of the recent work in sarcasm detection has been carried out on textual data. In this paper, we argue that incorporating multimodal cues can improve the automatic classification of sarcasm. As a first step towards enabling the development of multimodal approaches for sarcasm detection, we propose a new sarcasm dataset, Multimodal Sarcasm Detection Dataset (MUS-tARD 1 ), compiled from popular TV shows. MUStARD consists of audiovisual utterances annotated with sarcasm labels. Each utterance is accompanied by its context of historical utterances in the dialogue, which provides additional information on the scenario where the utterance occurs. Our initial results show that the use of multimodal information can reduce the relative error rate of sarcasm detection by up to 12.9% in F-score when compared to the use of individual modalities. The full dataset is publicly available for use at https://github. com/soujanyaporia/MUStARD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.