. Significance: Oral cancer is among the most common cancers globally, especially in low- and middle-income countries. Early detection is the most effective way to reduce the mortality rate. Deep learning-based cancer image classification models usually need to be hosted on a computing server. However, internet connection is unreliable for screening in low-resource settings. Aim: To develop a mobile-based dual-mode image classification method and customized Android application for point-of-care oral cancer detection. Approach: The dataset used in our study was captured among 5025 patients with our customized dual-modality mobile oral screening devices. We trained an efficient network MobileNet with focal loss and converted the model into TensorFlow Lite format. The finalized lite format model is and ideal for smartphone platform operation. We have developed an Android smartphone application in an easy-to-use format that implements the mobile-based dual-modality image classification approach to distinguish oral potentially malignant and malignant images from normal/benign images. Results: We investigated the accuracy and running speed on a cost-effective smartphone computing platform. It takes to process one image pair with the Moto G5 Android smartphone. We tested the proposed method on a standalone dataset and achieved 81% accuracy for distinguishing normal/benign lesions from clinically suspicious lesions, using a gold standard of clinical impression based on the review of images by oral specialists. Conclusions: Our study demonstrates the effectiveness of a mobile-based approach for oral cancer screening in low-resource settings.
In medical imaging, deep learning-based solutions have achieved state-of-the-art performance. However, reliability restricts the integration of deep learning into practical medical workflows since conventional deep learning frameworks cannot quantitatively assess model uncertainty. In this work, we propose to address this shortcoming by utilizing a Bayesian deep network capable of estimating uncertainty to assess oral cancer image classification reliability. We evaluate the model using a large intraoral cheek mucosa image dataset captured using our customized device from high-risk population to show that meaningful uncertainty information can be produced. In addition, our experiments show improved accuracy by uncertainty-informed referral. The accuracy of retained data reaches roughly 90% when referring either 10% of all cases or referring cases whose uncertainty value is greater than 0.3. The performance can be further improved by referring more patients. The experiments show the model is capable of identifying difficult cases needing further inspection.
Early detection of oral cancer in low-resource settings necessitates a Point-of-Care screening tool that empowers Frontline-Health-Workers (FHW). This study was conducted to validate the accuracy of Convolutional-Neural-Network (CNN) enabled m(mobile)-Health device deployed with FHWs for delineation of suspicious oral lesions (malignant/potentially-malignant disorders). The effectiveness of the device was tested in tertiary-care hospitals and low-resource settings in India. The subjects were screened independently, either by FHWs alone or along with specialists. All the subjects were also remotely evaluated by oral cancer specialist/s. The program screened 5025 subjects (Images: 32,128) with 95% (n = 4728) having telediagnosis. Among the 16% (n = 752) assessed by onsite specialists, 20% (n = 102) underwent biopsy. Simple and complex CNN were integrated into the mobile phone and cloud respectively. The onsite specialist diagnosis showed a high sensitivity (94%), when compared to histology, while telediagnosis showed high accuracy in comparison with onsite specialists (sensitivity: 95%; specificity: 84%). FHWs, however, when compared with telediagnosis, identified suspicious lesions with less sensitivity (60%). Phone integrated, CNN (MobileNet) accurately delineated lesions (n = 1416; sensitivity: 82%) and Cloud-based CNN (VGG19) had higher accuracy (sensitivity: 87%) with tele-diagnosis as reference standard. The results of the study suggest that an automated mHealth-enabled, dual-image system is a useful triaging tool and empowers FHWs for oral cancer screening in low-resource settings.
. Significance: Convolutional neural networks (CNNs) show the potential for automated classification of different cancer lesions. However, their lack of interpretability and explainability makes CNNs less than understandable. Furthermore, CNNs may incorrectly concentrate on other areas surrounding the salient object, rather than the network’s attention focusing directly on the object to be recognized, as the network has no incentive to focus solely on the correct subjects to be detected. This inhibits the reliability of CNNs, especially for biomedical applications. Aim: Develop a deep learning training approach that could provide understandability to its predictions and directly guide the network to concentrate its attention and accurately delineate cancerous regions of the image. Approach: We utilized Selvaraju et al.’s gradient-weighted class activation mapping to inject interpretability and explainability into CNNs. We adopted a two-stage training process with data augmentation techniques and Li et al.’s guided attention inference network (GAIN) to train images captured using our customized mobile oral screening devices. The GAIN architecture consists of three streams of network training: classification stream, attention mining stream, and bounding box stream. By adopting the GAIN training architecture, we jointly optimized the classification and segmentation accuracy of our CNN by treating these attention maps as reliable priors to develop attention maps with more complete and accurate segmentation. Results: The network’s attention map will help us to actively understand what the network is focusing on and looking at during its decision-making process. The results also show that the proposed method could guide the trained neural network to highlight and focus its attention on the correct lesion areas in the images when making a decision, rather than focusing its attention on relevant yet incorrect regions. Conclusions: We demonstrate the effectiveness of our approach for more interpretable and reliable oral potentially malignant lesion and malignant lesion classification.
. Significance: Early detection of oral cancer is vital for high-risk patients, and machine learning-based automatic classification is ideal for disease screening. However, current datasets collected from high-risk populations are unbalanced and often have detrimental effects on the performance of classification. Aim: To reduce the class bias caused by data imbalance. Approach: We collected 3851 polarized white light cheek mucosa images using our customized oral cancer screening device. We use weight balancing, data augmentation, undersampling, focal loss, and ensemble methods to improve the neural network performance of oral cancer image classification with the imbalanced multi-class datasets captured from high-risk populations during oral cancer screening in low-resource settings. Results: By applying both data-level and algorithm-level approaches to the deep learning training process, the performance of the minority classes, which were difficult to distinguish at the beginning, has been improved. The accuracy of “premalignancy” class is also increased, which is ideal for screening applications. Conclusions: Experimental results show that the class bias induced by imbalanced oral cancer image datasets could be reduced using both data- and algorithm-level methods. Our study may provide an important basis for helping understand the influence of unbalanced datasets on oral cancer deep learning classifiers and how to mitigate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.