The discoloration and resistance to subterranean termite attack of four furfurylated fast-growing tropical wood species were evaluated after outdoor exposure for 1 year in Bogor, Indonesia. For comparison purposes, imidacloprid-preserved and untreated wood samples were also prepared. Discoloration of all treated samples was measured before and after the furfurylation process. The wood specimens were then placed vertically to three-fourths of their length in the ground for 1 year, at which point they were evaluated for resistance to subterranean termite attack. After furfurylation, wood samples were darker in color than untreated wood, while imidacloprid-preserved wood was lighter. After 1-year exposure, furfurylated wood samples appeared to have the highest resistance to subterranean termite attack. These samples had minimal weight loss, indicating a substantial protection level. Imidacloprid-preserved wood had less resistance to termite attack, but was more resistant than untreated wood.
The aims of this work were to determine the color change and physical–mechanical properties of polystyrene glulam from three tropical wood species. Wood laminas were cut from logs harvested from a young plantation forest of manii (Maesopsis eminii), mangium (Acacia mangium), and rubber-wood (Hevea brasiliensis). The laminas were impregnated with monomer styrene that was polymerized using potassium peroxy-disulfate as a catalyst and heat. Three-layer glulam was constructed from the polystyrene laminas, using isocyanate glue and cold press. For comparison purposes, three-layer untreated glulam and solid wood samples were prepared. The results showed that the color change of polystyrene glulam was very small compared with untreated glulam. Polystyrene glulam had the highest density, while the density of untreated glulam did not differ from that of the solid wood. The moisture content of all products was matched to the environment, and fulfilled the Japanese standard. Compared with both types of glulams, solid wood had lower values for modulus of rupture (MOR), modulus of elasticity (MOE), and hardness, but higher shear strength. Meanwhile, polystyrene glulam had lower values for MOR and MOE, equal shear strength and wood failure, and higher hardness than the untreated glulam. All glulams had very little delamination in the hot water test. Only rubber-wood glulams fulfilled JAS 234-2003 for MOR, MOE, shear strength, and delamination. To obtain adequate physical–mechanical properties of glulams, medium-density wood is recommended for glulam manufacturing.
In general fast-growing tree species harvested at a young age has substantial amount of sapwood. It also contains juvenile wood, which has undesirable inferior physical and mechanical properties. Having sapwood and juvenile wood in the trees makes them very susceptible to be attacked by biological deterioration specifically termites in a tropical environment. The main objective of this study was to investigate the termite resistance of four fast-growing Indonesian wood species treated with furfuryl alcohol and imidacloprid. Wood specimens from sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), mangium (Acacia mangium), and pine (Pinus merkusii) were impregnated with furfuryl alcohol, using tartaric acid and heat as well as treated with imidacloprid for the polymerization process. All of the specimens were exposed to environmental conditions in the field for three months. Based on the findings in this work, the untreated control samples had higher weight loss values and lower protection levels than those of imidacloprid-treated and furfurylated samples of all four species. It appears that furfurylation and imidacloprid treatment of such fast-growing species had a significant impact regarding their resistance against termite so that their service life can be extended during their utilization.
Glued laminated bamboo lumber (GLBL) made of Dendrocalamus asper, Dendrocalamus giganteus, Dendrocalamus latiflorus and Gigantochloa levis has potential to overcome the shortage of wood supply. The objective of the study was to determine the effects of bamboo species on the properties of GLBL. Laboratory-scale GLBL was manufactured from 26−28 bamboo strips from each bamboo species, assembled vertically, glued with 250 g m -2 of water-based polymer-isocyanate, and applied force horizontally on the wooden clamps at room temperature for one hour. The dimensions of GLBL was 60 cm × 16 cm × thickness. Statistical analysis revealed that bamboo species significantly influenced the properties of GLBL. It was recorded that D. asper had superior physical and mechanical properties compared to other bamboo species in this study. The mechanical properties of D. asper GLBL were corresponding to wood strength class I, while GLBL made of D. giganteus, D. latiflorus and G. levis had equivalent strength to wood strength class II. The findings in this study affirmed that GLBL made of four bamboo species are promising materials for furniture and building components.
Timber from plantation forests has inferior physical and mechanical properties compared to timber from natural forest because it is mostly from fast-growing tree species that are cut at a young age. Filling cell voids with methyl methacrylate (MMA) can improve the wood properties. The purpose of this study was to determine the physical and mechanical properties of MMA-impregnated wood from three fast-growing wood species, namely jabon (Anthocephalus cadamba (Roxb.) Miq.), mangium (Acacia mangium Willd) and pine (Pinus merkusii Jungh. & de Vriese). Wood samples were either immersed in MMA monomer or impregnated with it and then heated to induce the polymerization process. Jabon, which was the lowest density wood, had the highest polymer loading, followed by pine and mangium. The physical and mechanical properties of samples were affected by wood species and the presence of MMA, with higher-density wood having better properties than wood with a lower density. Physical and mechanical properties of MMA wood were enhanced compared to untreated wood. Furthermore, the impregnation process was better than immersion process resulting the physical and mechanical properties. Based on MOR values, the MMA woods were one strength class higher compared to untreated wood with regard to Strength Classification of Indonesian Wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.