Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein–coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal–regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.
Ghrelin, a 28 amino acid gastric hormone is a natural ligand of the GH Secretagogue (GHS) receptor (GHS-R) and strongly stimulates GH secretion though, like synthetic GHS, it shows other endocrine and non-endocrine activities. Aim of the present study was to clarify whether ghrelin administration influences insulin and glucose levels in humans. To this goal, we compared the effects of ghrelin, hexarelin, a synthetic GHS, or placebo on insulin and glucose as well as on GH levels in 11 normal young volunteers (age [mean +/- SEM]: 28.5 +/- 3.1 yr; BMI: 22.2 +/- 0.9 Kg/m(2)). Ghrelin induced very marked increase in GH secretion (DeltaAUC(0-180): 5777.1 +/- 812.6 microg/l/h; p < 0.01) which was not modified by placebo. Placebo administration did not modify insulin and glucose levels. On the other hand, ghrelin administration induced a prompt increase in glucose levels (DeltaAUC(0-180): 1343.1 +/- 443.5 mg/dl/h; p < 0.01 vs. saline). Absolute glucose levels at +15' were already higher than those at baseline (93.9 +/- 7.1 mg/dl; p < 0.01) and persisted elevated up to 165' (90.3 +/- 5.8 mg/dl; p < 0.01 vs. 0'). Ghrelin administration was also followed by a decrease in serum insulin levels (DeltaAUC(0-180): -207.1 +/- 70.5 mU/l/h; p < 0.05 vs. saline). Absolute insulin levels were significantly reduced from 30' (11.4 +/- 0.9 mU/l, p < 0.1 vs. 0'), showed the nadir at +45' (10.0 +/- 0.6 mU/l, p < 0.01 vs. 0') and then persisted lower (p < 0.01) than baseline up to +105'. Hexarelin administration did not modify glucose and insulin levels despite its marked GH-releasing effect (DeltaAUC(0-180): 4156.8 +/- 1180.3 microg/l/h; p < 0.01 vs. saline) that was slightly lower (p < 0.05) than that of ghrelin. In conclusion, these findings show that, besides stimulating GH secretion, ghrelin is a gastric hormone possessing metabolic actions such as hyperglycemic effect and lowering effect on insulin secretion in humans, at least after acute administration.
An endogenous ligand for the GH secretagogue-receptor (GHS-R) has been recently purified from rat and human stomach and named Ghrelin. It has been demonstrated that Ghrelin specifically stimulates GH secretion from rat pituitary cells in culture as well as in rats in vivo. In this preliminary study, in 4 normal adults [age (mean+/-SE): 28.6+/-3.5 yr; body mass index (BMI): 22.3+/-2.1 kg/m2] we administered 1.0 microg/kg Ghrelin or GHRH-29 to compare their GH-releasing activities in humans. In all subjects Ghrelin induced a prompt, marked and long-lasting increase in circulating GH levels (peak: 107.9+/-26.1 microg/l; AUC: 6503.1+/-1632.7 microg/l/h). The GH response to Ghrelin was clearly higher (p<0.05) than that after GHRH (peak: 22.3+/-4.5 microg/l; AUC: 1517.5+/-338.4 microg/l/h). In conclusion, this preliminary study shows that Ghrelin exerts a strong stimulatory effect on GH secretion in humans releasing more GH than GHRH.
Ghrelin is a novel gastrointestinal hormone produced by rat and human gastric X-like neuroendocrine cells, which strongly stimulates GH secretion and influences energy balance, gastric motility, and acid secretion. Ghrelin is expressed in pituitary and gastrointestinal endocrine tumors. It binds to the GH secretagogue receptor (GHS-R), which is present in a wide variety of central and peripheral human tissues. The aim of the present study was 2-fold: 1) to determine, by immunohistochemistry and mRNA analysis, whether pancreatic islet cells produce ghrelin and express GHS-R; and 2) to investigate ghrelin and GHS-R expression in pancreatic endocrine tumors. Seven cases of nonneoplastic pancreatic tissue and 28 endocrine tumors were studied. In pancreatic islets, ghrelin immunoreactivity was present in all cases and confined to beta-cells. Eleven of the 28 (39%) endocrine tumors were immunoreactive for ghrelin. In situ hybridization and RT-PCR confirmed the immunohistochemical data for both tumors and islets but also revealed ghrelin mRNA in 8 and 11 additional tumors, respectively. GHS-R 1a and 1b mRNAs were present in 7 of 28 and 14 of 28 tumors, respectively, studied by RT-PCR. These findings demonstrate that ghrelin production is not restricted to the stomach but is also present in pancreatic beta-cells and endocrine tumors (regardless of the type of pancreatic hormone produced, if any). Expression of GHS-R in some of the endocrine tumors studied indicates that autocrine/paracrine circuits may be active in neoplastic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.