Considering the threat of antimicrobial resistance and the difficulties it entails in treating infections, it is necessary to cross borders and approach infection management in an integrated, multidisciplinary manner. We propose the antimicrobial, infection prevention and diagnostic stewardship model comprising three intertwined programs: antimicrobial, infection prevention and diagnostic stewardship, involving all stakeholders. The focus is a so-called 'theragnostics' approach. This leads to a personalized infection management plan, improving patient care and minimizing resistance development. Furthermore, it is important that healthcare regions nationally and internationally work together, ensuring that the patient (and microorganism) transfers will not cause problems in a neighboring institution. This antimicrobial, infection prevention and diagnostic stewardship model can serve as a blue print to implement innovative, integrative infection management.
The aim of this study was to develop an easy-to-use culture-free diagnostic method based on next generation sequencing (NGS) of PCR amplification products encompassing whole 16S-23S rRNA region to improve the resolution of bacterial species identification. To determine the resolution of the new method 67 isolates were subjected to four identification methods: Sanger sequencing of the 16S rRNA gene; NGS of the 16S-23S rRNA region using MiSeq (Illumina) sequencer; Microflex MS (Bruker) and VITEK MS (bioMérieux). To evaluate the performance of this new method when applied directly on clinical samples, we conducted a proof of principle study with 60 urine samples from patients suspected of urinary tract infections (UTIs), 23 BacT/ALERT (bioMérieux) positive blood culture bottles and 21 clinical orthopedic samples. The resolution power of NGS of the 16S-23S rRNA region was superior to other tested identification methods. Furthermore, the new method correctly identified pathogens established as the cause of UTIs and blood stream infections with conventional culture. NGS of the 16S-23S rRNA region also showed increased detection of bacterial microorganisms in clinical samples from orthopedic patients. Therefore, we conclude that our method has the potential to increase diagnostic yield for detection of bacterial pathogenic species compared to current methods.
Results from microbiological and epidemiological investigations, as well as mathematical modelling, show that the transmission dynamics of nosocomial pathogens, especially of multiple antibiotic-resistant bacteria, is not exclusively amenable to single-hospital infection prevention measures. Crucially, their extent of spread depends on the structure of an underlying "healthcare network", as determined by inter-institutional referrals of patients. The current trend towards centralized healthcare systems favours the spread of hospital-associated pathogens, and must be addressed by coordinated regional or national approaches to infection prevention in order to maintain patient safety. Here we review recent advances that support this hypothesis, and propose a "next-generation" network-approach to hospital infection prevention and control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.