A B S T R A C T PurposeThe trial objectives were to identify the maximum-tolerated dose (MTD) of first-line gemcitabine plus nab-paclitaxel in metastatic pancreatic adenocarcinoma and to provide efficacy and safety data. Additional objectives were to evaluate positron emission tomography (PET) scan response, secreted protein acidic and rich in cysteine (SPARC), and CA19-9 levels in relation to efficacy. Subsequent preclinical studies investigated the changes involving the pancreatic stroma and drug uptake. Patients and MethodsPatients with previously untreated advanced pancreatic cancer were treated with 100, 125, or 150 mg/m 2 nab-paclitaxel followed by gemcitabine 1,000 mg/m 2 on days 1, 8, and 15 every 28 days. In the preclinical study, mice were implanted with human pancreatic cancers and treated with study agents. ResultsA total of 20, 44, and three patients received nab-paclitaxel at 100, 125, and 150 mg/m 2 , respectively. The MTD was 1,000 mg/m 2 of gemcitabine plus 125 mg/m 2 of nab-paclitaxel once a week for 3 weeks, every 28 days. Dose-limiting toxicities were sepsis and neutropenia. At the MTD, the response rate was 48%, with 12.2 median months of overall survival (OS) and 48% 1-year survival. Improved OS was observed in patients who had a complete metabolic response on [ 18 F]fluorodeoxyglucose PET. Decreases in CA19-9 levels were correlated with increased response rate, progression-free survival, and OS. SPARC in the stroma, but not in the tumor, was correlated with improved survival. In mice with human pancreatic cancer xenografts, nab-paclitaxel alone and in combination with gemcitabine depleted the desmoplastic stroma. The intratumoral concentration of gemcitabine was increased by 2.8-fold in mice receiving nab-paclitaxel plus gemcitabine versus those receiving gemcitabine alone. ConclusionThe regimen of nab-paclitaxel plus gemcitabine has tolerable adverse effects with substantial antitumor activity, warranting phase III evaluation.
Microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is an independent predictor of poor outcomes subsequent to surgical resection or liver transplantation (LT); however, MVI currently cannot be adequately determined preoperatively. Radiogenomic venous invasion (RVI) is a contrast-enhanced computed tomography (CECT) biomarker of MVI derived from a 91-gene HCC “venous invasion” gene expression signature. Preoperative CECTs of 157 HCC patients who underwent surgical resection (N = 72) or LT (N = 85) between 2000 and 2009 at three institutions were evaluated for the presence or absence of RVI. RVI was assessed for its ability to predict MVI and outcomes. Interobserver agreement for scoring RVI was substantial among five radiologists (κ = 0.705; P < 0.001). The diagnostic accuracy, sensitivity, and specificity of RVI in predicting MVI was 89%, 76%, and 94%, respectively. Positive RVI score was associated with lower overall survival (OS) than negative RVI score in the overall cohort (P < 0.001; 48 vs. >147 months), American Joint Committee on Cancer tumor-node-metastasis stage II (P < 0.001; 34 vs. >147 months), and in LT patients within Milan criteria (P < 0.001; 69 vs. >147 months). Positive RVI score also portended lower recurrence-free survival at 3 years versus negative RVI score (P = 0.001; 27% vs. 62%). Conclusion: RVI is a noninvasive radiogenomic biomarker that accurately predicts histological MVI in HCC surgical candidates. Its presence on preoperative CECT is associated with early disease recurrence and poor OS and may be useful for identifying patients less likely to derive a durable benefit from surgical treatment. (Hepatology 2015;62:792–800)
Purpose: This phase Ib study evaluated the safety and tolerability of PEGylated human recombinant hyaluronidase (PEGPH20) in combination with gemcitabine (Gem), and established a phase II dose for patients with untreated stage IV metastatic pancreatic ductal adenocarcinoma (PDA). Objective response rate and treatment efficacy using biomarker and imaging measurements were also evaluated.Experimental Design: Patients received escalating intravenous doses of PEGPH20 in combination with Gem using a standard 3þ3 dose-escalation design. In cycle 1 (8 weeks), PEGPH20 was administrated twice weekly for 4 weeks, then once weekly for 3 weeks; Gem was administrated once weekly for 7 weeks, followed by 1 week off treatment. In each subsequent 4-week cycle, PEGPH20 and Gem were administered once weekly for 3 weeks, followed by 1 week off. Dexamethasone (8 mg) was given pre-and post-PEGPH20 administration. Several safety parameters were evaluated.Results: Twenty-eight patients were enrolled and received PEGPH20 at 1.0 (n ¼ 4), 1.6 (n ¼ 4), or 3.0 mg/kg (n ¼ 20), respectively. The most common PEGPH20-related adverse events were musculoskeletal and extremity pain, peripheral edema, and fatigue. The incidence of thromboembolic events was 29%. Median progression-free survival (PFS) and overall survival (OS) rates were 5.0 and 6.6 months, respectively. In 17 patients evaluated for pretreatment tissue hyaluronan (HA) levels, median PFS and OS rates were 7.2 and 13
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.