Dopamine transmission in the ventral striatum (VST), a structure which includes the nucleus accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and in the reinforcing effects of virtually all drugs of abuse. The aim of this study was to assess the accuracy and precision of measurements of D(2) receptor availability in the VST obtained with positron emission tomography on the high-resolution ECAT EXACT HR+ scanner (Siemens Medical Systems, Knoxville, TN, U.S.A.). A method was developed for identification of the boundaries of the VST on coregistered high-resolution magnetic resonance imaging scans. Specific-to-nonspecific partition coefficient (V(3)") and binding potential (BP) of [(11)C]raclopride were measured twice in 10 subjects, using the bolus plus constant infusion method. [(11)C]Raclopride V(3)" in the VST (1.86 +/- 0.29) was significantly lower than in the dorsal caudate (DCA, 2.33 +/- 0.28) and dorsal putamen (DPU, 2.99 +/- 0.26), an observation consistent with postmortem studies. The reproducibility of V(3)" and BP were appropriate and similar in VST (V(3)" test-retest variability of 8.2% +/- 6.2%, intraclass correlation coefficient = 0.83), DCA (7.7% +/- 5.1%, 0.77), DPU (6.0% +/- 4.1%, 0.71), and striatum as a whole (6.3% +/- 4.1%, 0.78). Partial volume effects analysis revealed that activities in the VST were significantly contaminated by counts spilling over from the adjacent DCA and DPU: 70% +/- 5% of the specific binding measured in the VST originated from D(2) receptors located in the VST, whereas 12% +/- 3% and 18% +/- 3% were contributed by D(2) receptors in the DCA and DPU, respectively. Thus, accuracy of D(2) receptor measurement is improved by correction for partial voluming effects. The demonstration of an appropriate accuracy and precision of D(2) receptor measurement with [(11)C]raclopride in the VST is the first critical step toward the use of this ligand in the study of synaptic dopamine transmission at D(2) receptors in the VST using endogenous competition techniques.
Studies in nonhuman primates documented that appropriate stimulation of dopamine (DA) D1 receptors in the dorsolateral prefrontal cortex (DLPFC) is critical for working memory processing. The defective ability of patients with schizophrenia at working memory tasks is a core feature of this illness. It has been postulated that this impairment relates to a deficiency in mesocortical DA function. In this study, D1 receptor availability was measured with positron emission tomography and the selective D1 receptor antagonist [11C]NNC 112 in 16 patients with schizophrenia (seven drug-naive and nine drug-free patients) and 16 matched healthy controls. [11C]NNC 112 binding potential (BP) was significantly elevated in the DLPFC of patients with schizophrenia (1.63 +/- 0.39 ml/gm) compared with control subjects (1.27 +/- 0.44 ml/gm; p = 0.02). In patients with schizophrenia, increased DLPFC [11C]NNC 112 BP was a strong predictor of poor performance at the n-back task, a test of working memory. These findings confirm that alteration of DLPFC D1 receptor transmission is involved in working memory deficits presented by patients with schizophrenia. Increased D1 receptor availability observed in patients with schizophrenia might represent a compensatory (but ineffective) upregulation secondary to sustained deficiency in mesocortical DA function.
Serotonin 5-HT(1A) receptors are implicated in the pathophysiology of neuropsychiatric conditions. The goal of this study was to evaluate methods to derive 5-HT(1A) receptor parameters in the human brain with positron emission tomography (PET) and [carbonyl-(11)C]WAY 100635. Five healthy volunteer subjects were studied twice. Three methods of analysis were used to derive the binding potential (BP), and the specific to nonspecific equilibrium partition coefficient (k3/k4). Two methods, kinetic analysis based on a three compartment model and graphical analysis, used the arterial plasma time-activity curves as the input function to derive BP and k3/k4. A third method, the simplified reference tissue model (SRTM), derived the input function from uptake data of a region of reference, the cerebellum, and provided only k3/k4. All methods provided estimates of regional 5-HT(1A) receptor parameters that were highly correlated. Results were consistent with the known distribution of 5-HT(1A) receptors in the human brain. Compared with kinetic BP, graphical analysis slightly underestimated BP, and this phenomenon was mostly apparent in small size-high noise regions. Compared with kinetic k3/k4, the reference tissue method underestimated k3/k4 and the underestimation was apparent primarily in regions with high receptor density. Derivation of BP by both kinetic and graphical analysis was highly reliable, with an intraclass correlation coefficient (ICC) of 0.84 +/- 0.14 (mean +/- SD of 15 regions) and 0.84 +/- 0.19, respectively. In contrast, the reliability of k3/k4 was lower, with ICC of 0.53 +/- 0.28, 0.47 +/- 0.28, and 0.55 +/- 0.29 for kinetic, graphical, and reference tissue methods, respectively. In conclusion, derivation of BP by kinetic analysis using the arterial plasma input function appeared as the method of choice because of its higher test-retest reproducibility, lower vulnerability to experimental noise, and absence of bias.
Previous research has shown that dopamine signaling in the limbic striatum is crucial for selecting adaptive, motivated behavior, and that disrupted dopamine transmission is associated with impulsive and maladaptive behavior. In humans, Positron Emission Tomography (PET) imaging studies have shown that cocaine dependence is associated with the dysregulation of striatal dopamine signaling, which is associated with cocaine seeking behavior. The goal of the present study was to investigate whether this association applies to the treatment setting. Our hypothesis was that dopamine signaling in the limbic striatum would be associated with response to a behavioral treatment that uses positive reinforcement to replace impulsive cocaine use with constructive personal goals. Prior to treatment, cocaine dependent subjects underwent two PET scans using [11C]raclopride, before and after the administration of a stimulant (methylphenidate), to measure striatal D2/3 receptor binding and pre-synaptic dopamine release. The results showed that both of these outcome measures were reduced in the volunteers who failed to respond to treatment compared to those who experienced a positive treatment response. These findings provide insight into the neurochemistry of treatment response and show that low dopamine transmission is associated with treatment failure. In addition, these data suggest that the combination of behavioral treatment with methods that increase striatal dopamine signaling might serve as a therapeutic strategy for cocaine dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.