Carbamazepine and phenytoin, two of the most commonly prescribed antiepileptic drugs, have been proposed to share a similar mechanism of action by use-dependent inhibition of Na+ channels. The proposed similar mechanism of action, however, cannot explain the common clinical experiences that the two drugs are different; in some patients, one drug may be more effective than the other. This may occur even when optimal therapeutic concentrations are reached with both medications in plasma or the cerebrospinal fluid. In this study, we show that the action of the two drugs on Na+ channels are quantitatively very different. The affinity between inactivated Na+ channels and carbamazepine (apparent dissociation constant approximately 25 microM) is approximately 3 times lower than that of phenytoin, yet the binding rate constant of carbamazepine onto the inactivated Na+ channels is approximately 38,000 M(-1)/sec(-1), or approximately 5 times faster than that of phenytoin. It is speculated that carbamazepine may be more effective than phenytoin in treating seizures whose ictal depolarization shift is relatively short, whereas a better response to phenytoin may imply abnormal discharges characterized by more prolonged depolarization.
The proportion of CI subtypes varied in different stroke registries. This may be partly due to applied classification criteria and racial-ethnic differences. Awareness of the risk factors and outcome in each subtype of stroke may afford further insights into the surveillance and treatment of cerebrovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.