Abstract. >We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ∼ 15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ∼ 15 years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular those of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model–model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that it is more important to have multi-member (at least three) ensembles for each scenario from every established participating model, rather than a large number of individual models.
Copyright 2011 Elsevier B.V., All rights reserved.The CMAQ modeling system has been used to simulate the air quality for North America and Europe for the entire year of 2006 as part of the Air Quality Model Evaluation International Initiative (AQMEII). The operational model performance of tropospheric ozone (O), fine particulate matter (PM) and total particulate matter (PM) for the two continents has been assessed. The model underestimates daytime (8am-8pm LST) O mixing ratios by 13% in the winter for North America, primarily due to an underestimation of daytime O mixing ratios in the middle and lower troposphere from the lateral boundary conditions. The model overestimates winter daytime O mixing ratios in Europe by an average of 8.4%. The model underestimates daytime O by 4-5% in the spring for both continents, while in the summer daytime O is overestimated by 9.8% for North America and slightly underestimated by 1.6% for Europe. The model overestimates daytime O in the fall for both continents, grossly overestimating daytime O by over 30% for Europe. The performance for PM varies both seasonally and geographically for the two continents. For North American, PM is overestimated in the winter and fall, with an average Normalized Mean Bias (NMB) greater than -30%, while performance in the summer is relatively good, with an average NMB of -4.6%. For Europe, PM is underestimated throughout the entire year, with the NMB ranging from -24% in the fall to -55% in the winter. PM is underestimated throughout the year for both North America and Europe, with remarkably similar performance for both continents. The domain average NMB for PM ranges between -45% and -65% for the two continents, with the largest underestimation occurring in the summer for North American and the winter for Europe
The implementation of boundary conditions is a key aspect of climate simulations. We describe here how the Climate Model Intercomparison Project Phase 6 (CMIP6) forcing data sets have been processed and implemented in Version 6 of the Institut Pierre-Simon Laplace (IPSL) climate model (IPSL-CM6A-LR) as used for CMIP6. Details peculiar to some of the Model Intercomparison Projects are also described. IPSL-CM6A-LR is run without interactive chemistry; thus, tropospheric and stratospheric aerosols as well as ozone have to be prescribed. We improved the aerosol interpolation procedure and highlight a new methodology to adjust the ozone vertical profile in a way that is consistent with the model dynamical state at the time step level. The corresponding instantaneous and effective radiative forcings have been estimated and are being presented where possible.Plain Language Summary Climate Model Intercomparison Project Phase 6 is an international project to compare the results from climate model simulations performed according to a common protocol. Such simulations require boundary conditions (called "climate forcings"), which are fed to the models in order to represent, for example, long-lived greenhouse gases, ozone, atmospheric aerosols, or land surface properties. The same forcing data sets are used by the different modeling groups who carry out the Climate Model Intercomparison Project Phase 6 simulations; however, their implementation may differ as it depends on the model structure. This article gives details of how these forcing data were implemented in the IPSL-CM6A-LR model. Some of the forcing data are common to all types all simulations, whereas others depend on the runs considered. Radiative forcings, as estimated in the model, are presented for some of the forcing mechanisms. Key Points:• We present how the CMIP6 forcing data were implemented in the IPSL-CM6A-LR climate model for the realization of the CMIP6 set of climate simulations • An improved conservative interpolation procedure for emissions is detailed and illustrated to compute tropospheric aerosols • We present a new methodology to adjust the prescribed ozone vertical profile to match the model atmospheric dynamical state around the tropopause
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.