Multidrug resistance-associated protein 3 (MRP3, ABCC3) plays an important role in protecting hepatocytes and other tissues by excreting an array of toxic organic anion conjugates, including bile salts. MRP3/ABCC3 expression is increased in the liver of some cholestatic patients, but the molecular mechanism of this up-regulation remains elusive. In this report, we assessed liver MRP3/ABCC3 expression in patients (n=22) with obstructive cholestasis due to gallstones blockage of bile ducts and non-cholestatic patient controls (n=22). MRP3/ABCC3 mRNA and protein expression were significantly increased 3.4- and 4.6- fold, respectively in these cholestatic patients where elevated plasma TNFα (4.7-fold, P<0.01) and hepatic SP1 and LRH-1 expression (3.1- and 2.1-fold at mRNA level, 3.5- and 2.5-fold at protein level, respectively) were also observed. The induction of hepatic MRP3/ABCC3 mRNA expression is significantly positively correlated with the level of plasma TNFα in these patients. In HepG2 cells, TNFα treatment induced SP1 and MRP3/ABCC3 expression in a dose- and time-dependent manner, where increased phosphorylation of JNK/SAPK was also detected. These inductions were significantly reduced in the presence of the JNK inhibitor SP600125. TNFα treatment enhanced HepG2 cell nuclear extract binding activity to the MRP3/ABCC3 promoter, but was abolished by SP600125 as demonstrated by EMSA. An increase in nuclear protein binding activity to the MRP3/ABCC3 promoter consisting primarily of SP1 was also seen in liver samples from cholestatic patients as assessed by supershift EMSA assays. Conclusions Our findings indicate that up-regulation of hepatic MRP3/ABCC3 expression in human obstructive cholestasis is likely triggered by TNFα, mediated by activations of JNK/SAPK and SP1.
Background Achaete scute-like 2 (Ascl2), a basic helix-loop-helix (bHLH) transcription factor, controls the fate of intestinal stem cells. However, the role of Ascl2 in colon cancer progenitor cells remains unknown. The cell line HT-29 (47.5–95% of CD133 + population) and LS174T (0.45% of CD133 + population) were chosen for functional evaluation of Ascl2 in colon cancer progenitor cells after gene knockdown by RNA interference. Methodology/Principal Findings Immunohistochemistry demonstrated that Ascl2 was significantly increased in colorectal adenocarcinomas. Downregulation of Ascl2 using RNA interference in cultured colonic adenocarcinoma HT-29 and LS174T cells reduced cellular proliferation, colony-forming ability, invasion and migration in vitro, and resulted in the growth arrest of tumor xenografts in vivo. The Ascl2 protein level in CD133 + HT-29 cells was significantly higher than in CD133 − HT-29 cells. Ascl2 blockade via shRNA interference in HT-29 cells (shRNA-Ascl2/HT-29 cells) resulted in 26.2% of cells staining CD133 + compared with 54.7% in control shRNA-Ctr/HT-29 cells. The levels of ‘stemness’ associated genes, such as CD133, Sox2, Oct4, Lgr5, Bmi1, and C-myc, were significantly decreased in shRNA-Ascl2/HT-29 and shRNA-Ascl2/LS174T cells in vitro as well as in the corresponding tumor xenograft (CD133 was not performed in shRNA-Ascl2/LS174T cells). The shRNA-Ascl2/HT-29 cells had inhibited abilities to form tumorspheres compared with control. The microRNA (miRNAs) microarrays, identified 26 up-regulated miRNAs and 58 down-regulated miRNAs in shRNA-Ascl2/HT-29 cells. Expression levels of let-7b, miRNA-124, miRNA-125b, miRNA-17, miRNA-20a and miRNA-302b, involved in the regulation of ‘stemness’, were quantified with qPCR, which confirmed their identities. Restoration of miRNA-302b, via its mimic, led to the restoration of shRNA-Ascl2/HT-29 ‘stemness’ characteristics, including tumorsphere formation and ‘stemness’ associated genes levels, and the recovery of cellular behaviors, including colony-forming ability, invasion and migration in vitro. Conclusions/Significance Ascl2 may be a potential target for the inhibition of colon cancer progenitor cells, and functions through a miR-302b-related mechanism.
SOX2 and Hath1 are inversely expressed in gastric carcinoma. SOX2 provides a survival advantage to patients of gastric carcinoma and appears to be associated with metastasis and clinical stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.