Germline BRCA1 mutations predispose to breast cancer. To identify genetic modifiers of this risk, we performed a genome-wide association study in 1,193 individuals with BRCA1 mutations who were diagnosed with invasive breast cancer under age 40 and 1,190 BRCA1 carriers without breast cancer diagnosis over age 35. We took forward 96 SNPs for replication in another 5,986 BRCA1 carriers (2,974 individuals with breast cancer and 3,012 unaffected individuals). Five SNPs on 19p13 were associated with breast cancer risk (Ptrend = 2.3 × 10−9 to Ptrend = 3.9 × 10−7), two of which showed independent associations (rs8170, hazard ratio (HR) = 1.26, 95% CI 1.17–1.35; rs2363956 HR = 0.84, 95% CI 0.80–0.89). Genotyping these SNPs in 6,800 population-based breast cancer cases and 6,613 controls identified a similar association with estrogen receptor–negative breast cancer (rs2363956 per-allele odds ratio (OR) = 0.83, 95% CI 0.75–0.92, Ptrend = 0.0003) and an association with estrogen receptor–positive disease in the opposite direction (OR = 1.07, 95% CI 1.01–1.14, Ptrend = 0.016). The five SNPs were also associated with triple-negative breast cancer in a separate study of 2,301 triple-negative cases and 3,949 controls (Ptrend = 1 × 10−7 to Ptrend = 8 × 10−5; rs2363956 per-allele OR = 0.80, 95% CI 0.74–0.87, Ptrend = 1.1 × 10−7).
Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorphisms (SNPs) in FGFR2 (rs2981582), TNRC9 (rs3803662), and MAP3K1 (rs889312) are associated with increased breast cancer risks in the general population. To investigate whether these loci are also associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers, we genotyped these SNPs in a sample of 10,358 mutation carriers from 23 studies. The minor alleles of SNP rs2981582 and rs889312 were each associated with increased breast cancer risk in BRCA2 mutation carriers (per-allele hazard ratio [HR] = 1.32, 95% CI: 1.20-1.45, p(trend) = 1.7 x 10(-8) and HR = 1.12, 95% CI: 1.02-1.24, p(trend) = 0.02) but not in BRCA1 carriers. rs3803662 was associated with increased breast cancer risk in both BRCA1 and BRCA2 mutation carriers (per-allele HR = 1.13, 95% CI: 1.06-1.20, p(trend) = 5 x 10(-5) in BRCA1 and BRCA2 combined). These loci appear to interact multiplicatively on breast cancer risk in BRCA2 mutation carriers. The differences in the effects of the FGFR2 and MAP3K1 SNPs between BRCA1 and BRCA2 carriers point to differences in the biology of BRCA1 and BRCA2 breast cancer tumors and confirm the distinct nature of breast cancer in BRCA1 mutation carriers.
The known breast cancer (BC) susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1,LSP1 and 2q35 confer increased risks of BC for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of three additional SNPs, rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11 and rs10941679 at 5p12 and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased BC risk for BRCA2 carriers (per-allele Hazard Ratio (HR)=1.10, 95%CI:1.03-1.18, p=0.006 and HR=1.09, 95%CI:1.01-1.19, p=0.03, respectively). Neither SNP was associated with BC risk for BRCA1 carriers and rs6504950 was not associated with BC for either BRCA1 or BRCA2 carriers. Of the nine polymorphisms investigated, seven were associated with BC for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, p-values:7×10−11-0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (p=0.0049, 0.03 respectively). All risk associated polymorphisms appear to interact multiplicatively on BC risk for mutation carriers. Based on the joint genotype distribution of the seven risk associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e. between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing BC by age 80, compared with 42-50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences may be sufficient to influence the clinical management of mutation carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.