Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P-dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation.
Secretagogues of rat peritoneal mast cells, such as mastoparan and compound 48/80, induce mast cell exocytosis by activating directly the guanosine triphosphate-binding proteins that are required for exocytosis. The introduction of a synthetic peptide that corresponds to the carboxyl-terminal end sequence of G alpha i3 into the cells specifically blocked this secretion. Similar results were obtained when antibodies to this peptide were introduced. The G alpha i3 was located in both the Golgi and the plasma membrane, but only the latter source of G alpha i3 appeared to be essential for secretion. These results indicate that G alpha i3 functions to control regulated exocytosis in mast cells.
Synaptotagmins (Syts) I and II are believed to act as Ca2+ sensors in the control of neurotransmission. Here we demonstrate that mast cells express Syt II in their lysosomal fraction. We further show that activation of mast cells by either aggregation of FcεRI or by Ca2+ ionophores results in exocytosis of lysosomes, in addition to the well documented exocytosis of their secretory granules. Syt II directly regulates lysosomal exocytosis, whereby overexpression of Syt II inhibited Ca2+-triggered release of the lysosomal processed form of cathepsin D, whereas suppression of Syt II expression markedly potentiated this release. These findings provide evidence for a novel function of Syt II in negatively regulating Ca2+-triggered exocytosis of lysosomes, and suggest that Syt II–regulated secretion from lysosomes may play an important role in mast cell biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.