Background. In kidney patients COVID-19 is associated with severely increased morbidity and mortality. A comprehensive comparison of the immunogenicity, tolerability, and safety of COVID-19 vaccination in different cohorts of kidney patients and a control cohort is lacking. Methods. This investigator driven, prospective, controlled multicenter study included 162 participants with chronic kidney disease (CKD) stages G4/5 (eGFR < 30 mL/min/1.73m2), 159 participants on dialysis, 288 kidney transplant recipients, and 191 controls. Participants received 2 doses of the mRNA-1273 COVID-19 vaccine (Moderna). The primary endpoint was seroconversion. Results. Transplant recipients had a significantly lower seroconversion rate when compared with controls (56.9% versus 100%, P < 0.001), with especially mycophenolic acid, but also, higher age, lower lymphocyte concentration, lower eGFR, and shorter time after transplantation being associated with nonresponder state. Transplant recipients also showed significantly lower titers of neutralizing antibodies and T-cell responses when compared with controls. Although a high seroconversion rate was observed for participants with CKD G4/5 (100%) and on dialysis (99.4%), mean antibody concentrations in the CKD G4/5 cohort and dialysis cohort were lower than in controls (2405 [interquartile interval 1287-4524] and 1650 versus 3186 [1896-4911] BAU/ mL, P = 0.06 and P < 0.001, respectively). Dialysis patients and especially kidney transplant recipients experienced less systemic vaccination related adverse events. No specific safety issues were noted. Conclusions. The immune response following vaccination in patients with CKD G4/5 and on dialysis is almost comparable to controls. In contrast, kidney transplant recipients have a poor response. In this latter, patient group development of alternative vaccination strategies are warranted.
Background In the general population, illness after infection with the SARS-CoV-2 Omicron variant is less severe compared with previous variants. Data on the disease burden of Omicron in immunocompromised patients are lacking. We investigated the clinical characteristics and outcome of a cohort of immunocompromised patients with COVID-19 caused by Omicron. Methods Solid organ transplant recipients, patients on anti-CD20 therapy, and allogenic hematopoietic stem cell transplantation recipients on immunosuppressive therapy infected with the Omicron variant, were included. Patients were contacted regularly until symptom resolution. Clinical characteristics of consenting patients were collected through their electronic patient files. To identify possible risk factors for hospitalization, a univariate logistic analysis was performed. Results A total of 114 consecutive immunocompromised patients were enrolled. Eighty-nine percent had previously received three mRNA vaccinations. While only one patient died, 23 (20%) required hospital admission for a median of 11 days. A low SARS-CoV-2 IgG antibody response (<300 BAU/mL) at diagnosis, higher age, being a lung transplant recipient, more comorbidities and a higher frailty were associated with hospital admission (all p < 0.01). At the end of follow-up, 25% had still not fully recovered. Of the 23 hospitalized patients, 70% had a negative and 92% a low IgG (<300 BAU/mL) antibody response at admission. Sotrovimab was administered to 17 of them, of which one died. Conclusions While the mortality in immunocompromised patients infected with Omicron was low, hospital admission was frequent and the duration of symptoms often prolonged. Besides vaccination, other interventions are needed to limit the morbidity from COVID-19 in immunocompromised patients.
The emergence and rapid spread of SARS-CoV-2 variants may impact vaccine efficacy significantly. The Omicron variant termed BA.2, which differs genetically substantially from BA.1, is currently replacing BA.1 in several countries, but its antigenic characteristics have not yet been assessed. Here, we used antigenic cartography to quantify and visualize antigenic differences between SARS-CoV-2 variants using hamster sera obtained after primary infection. Whereas early variants are antigenically similar, clustering relatively close to each other in antigenic space, Omicron BA.1 and BA.2 have evolved as two distinct antigenic outliers. Our data show that BA.1 and BA.2 both escape (vaccine-induced) antibody responses as a result of different antigenic characteristics. Close monitoring of the antigenic changes of SARS-CoV-2 using antigenic cartography can be helpful in the selection of future vaccine strains.
The severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2) Omicron variant (B.1.1.529) is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T-cell responses to SARS-CoV-2 D614G (wildtype, WT), and the B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants of concern (VOC) in a cohort of 60 health care workers (HCW) after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273 or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which significantly decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays with authentic virus showed consistent cross-neutralization of the Beta and Delta variants in study participants, but Omicron-specific responses were significantly lower or absent (up to a 34-fold decrease compared to D614G). Notably, BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV.2 priming partially restored neutralization of the Omicron variant, but responses were still up to-17-fold decreased compared to D614G. CD4+ T-cell responses were detected up to 6 months after all vaccination regimens; S-specific T-cell responses were highest after mRNA-1273 vaccination. No significant differences were detected between D614G- and variant-specific T-cell responses, including Omicron, indicating minimal escape at the T-cell level. This study shows that vaccinated individuals retain T-cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations may be needed to further restore Omicron cross-neutralization by antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.