tion-mass spectrometry (LC-ESI-MS) analysis. We hereby report the exact identity of 16 oxysterols and downstream metabolites, including cholestenoic acids, found in human CSF (Supplemental Table 1; supplemental material available online with this article; doi:10.1172/JCI68506DS1). The most abundant of these metabolites (19.48-0.40 ng/ml; Supplemental Figure 1) were 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7αH,3O-CA), 3β-hydroxycholest-5-en-26-oic acid (3β-HCA), and 2 newly identified metabolites in CSF, 3β,7α-diHCA and 3β,7β-dihydroxycholest-5-en-26-oic acid (3β,7β-diHCA). Precursors of these acids, including 26-HC and newly identified 7α,26-dihydroxycholesterol (7α,26-diHC; cholest-5-ene-3β,7α,26-triol) and 7α,26-dihydroxycholest-4-en-3-one (7α,26-diHCO), were also found, but at lower levels (0.15-0.03 ng/ml). Our results thus identified 4 novel oxysterol metabolites in human CSF that were downstream of 26-HC ( Figure 1A). 26-HC is metabolized via 7α,26-diHC and 7α,26-diHCO, or via 3β-HCA and 3β,7α-diHCA, to 7αH,3O-CA. While 26-HC can cross the blood-brain barrier (BBB) and enter the brain from the circulation (25), 7αH,3O-CA traverses the BBB and is exported from the brain (26). Very low levels of 24S-hydroxycholesterol (24S-HC; cholest-5-ene-3β,24S-diol), 25-hydroxycholesterol (25-HC; cholest-5-ene-3β,25-diol), and newly identified 7α,25-dihydroxycholesterol (7α,25-diHC; cholest-5-ene-3β,7α,25-triol) and 7α,25-dihydroxycholest-4-en-3-one (7α,25-diHCO) were also found in CSF (0.08-0.03 ng/ml).Reduced levels of 7α-hydroxylated cholestenoic acids in CSF and plasma/serum of human patients with SPG5. SPG5 presents with upper motor neuron signs and results from mutations in CYP7B1, encoding the oxysterol 7α-hydroxylase responsible for 7α-hydroxylation of side-chain oxidized sterols that is required for extrahepatic synthesis of 7αH,3O-CA and its precursor, 3β,7α-diHCA ( Figure 1A and ref. 18). In order to examine the pathogenic role of such mutations, we sought to identify alterations in oxysterol and cholestenoic acid profiles in CSF and plasma from these patients and then examine the biological activities of the altered metabolites. We first studied the CSF from 3 patients with SPG5
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disease due to mutations in SACS, which encodes sacsin, a protein localized on the mitochondrial surface and possibly involved in mitochondrial dynamics. In view of the possible mitochondrial involvement of sacsin, we investigated mitochondrial activity at functional and molecular level in skin fibroblasts obtained from ARSACS patients. We observed remarkable bioenergetic damage in ARSACS cells, as indicated by reduced basal, adenosine triphosphate (ATP)-linked and maximal mitochondrial respiration rate, and by reduced respiratory chain activities and mitochondrial ATP synthesis. These phenomena were associated with increased reactive oxygen species production and oxidative nuclear DNA damage. Our results suggest that loss of sacsin is associated with oxidative stress and mitochondrial dysfunction, and thus highlight a novel mechanism in the pathogenesis of ARSACS. The involvement of mitochondria and oxidative stress in disease pathogenesis has been described in a number of other neurodegenerative diseases. Therefore, on the basis of our findings, which suggest a potential therapeutic role for antioxidant agents, ARSACS seems to fall within a larger group of disorders.
The aim of our study was to test the safety and tolerability of lithium in multiple system atrophy (MSA). The study was randomized, placebo-controlled, and double-blind. The primary endpoint of the study was safety and tolerability. An interim analysis, performed 1 year after the first patient was randomized, showed a higher proportion of trial abandon (P < 0.01) and a higher number of adverse events (P < 0.02) in the lithium group. The trial was stopped by the Data Monitoring Committee. Overall, lithium was not well tolerated, and we do not encourage future studies with lithium in MSA patients.
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive weakness and spasticity in the lower limbs. Spasticity may occur in isolation (''pure'' HSP) or may be accompanied by other features. Although autosomal recessive HSPs usually have clinically complex phenotypes, mutations within a few genes underlie pure forms. Recently the gene (CYP7B1) responsible for SPG5, a pure recessive HSP, has been identified. The six CYP7B1 coding exons were analysed in four Italian families. Complete clinical assessment was performed in all patients. Blood CYP7B1 mRNA levels were assessed in three patients and six controls. Brain MRI and (18)F-fluoro-deoxy-glucose positron emission tomography (PET) scan were conducted in three patients. Two novel homozygous mutations were identified. Both result in a frameshift and the introduction of a premature stop codon at the C-terminal of the protein. Patients have reduced blood CYP7B1 mRNA levels, suggesting nonsense mediated RNA decay. Although clinical assessment showed a pure form of spastic paraplegia, MRI demonstrated white matter abnormalities in three patients and PET scan revealed cerebellar hypometabolism in one. Based on the results, we report the first Italian families with SPG5 molecular characterization and describe two novel truncating mutations in CYP7B1. The recessive character, the truncating nature of the mutations, and the reduced peripheral blood CYP7B1 mRNA levels suggest that the development of the disease is associated with a loss of function. SPG5 is considered a pure form of HSP, but MRI and PET findings in our patients suggest that SPG5 phenotype may be broader than the pure presentation.
Background: PARK8 is the most common known mendelian form of Parkinson's Disease (PD). It is due to mutations in the leucine-rich repeat kinase 2 (LRRK2) gene and G2019S is considered the most frequent mutation in the Caucasian population, in particular in the Southern Europe and Mediterranean countries. Objective: We assessed the frequency of the G2019S and R1441C/H/G mutations in 513 (311 M and 202 F) unrelated PD patients from Campania, in Southern Italy. Methods: Three hundreds and thirty-six patients presented a sporadic disease, and 177 had a familial history of PD or tremor. Three hundreds and eighty cases originated from the province of Naples. We compared our LRRK2 mutation carriers to idiopathic PD patients matched for recruiting center, gender, age and age at onset. Results: Thirteen patients (8 M and 5 F) carried the R1441C mutation and 4 (3 M and 1 F) the G2019S mutation, all in heterozygous state. All carriers originated from the province of Naples. No carriers of the R1441H or R1441G mutations were found. The LRRK2 mutation carriers were clinically similar to idiopathic PD patients. The R1441C and G2019S mutations are not rare causes of PD in Campania, especially in the province of Naples and among the familial cases, where the overall mutation prevalence is 6.8%. Conclusions: The R1441C prevalence was higher than that of G2019S (2.5% vs 0.8%), underlining the importance of the geographical differencies in LRRK2 mutation frequency for molecular screening and genetic counseling of PD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.