Parathyroid hormone-related protein (PTHrP) is shortly upregulated in acute renal injury, but its pathophysiologic role is unclear. Investigated was whether PTHrP might act as a profibrogenic factor in mice that do or do not overexpress PTHrP in the proximal tubule after folic acid (FA) nephrotoxicity, a model of acute renal damage followed by partial regeneration and patchy tubulointerstitial fibrosis. It was found that constitutive PTHrP overexpression in these animals conveyed a significant increase in tubulointerstitial fibrosis, associated with both fibroblast activation (as ␣-smooth muscle actin staining) and macrophage influx, compared with control littermates at 2 to 3 wk after FA damage. Cell proliferation and survival was higher (P < 0.01) in the renal interstitium of PTHrP-overexpressing mice than in control littermates within this period after injury. Moreover, the former mice had a constitutive Bcl-X L protein overexpression. In vitro studies in renal tubulointerstitial and fibroblastic cells strongly suggest that PTHrP (1-36) (100 nM) reduced FA-induced apoptosis through a dual mechanism involving Bcl-X L upregulation and Akt and Bad phosphorylation. PTHrP (1-36) also stimulated monocyte chemoattractant protein-1 expression in tubuloepithelial cells, as well as type-1 procollagen gene expression and fibronectin (mRNA levels and protein secretion) in these cells and renal fibroblastic cells. Our findings indicate that this peptide, by interaction with the PTH1 receptor, can increase tubulointerstitial cell survival and seems to act as a proinflammatory and profibrogenic factor in the FA-damaged kidney.
Abstract-Persistent proteinuria is considered a deleterious prognostic factor in most progressive renal diseases. However, the mechanisms by which proteinuria induces renal damage remain undetermined. Since proximal tubular cells possess all the machinery to generate angiotensin II (Ang II), we approached the hypothesis that proteinuria could elicit the renal activation of the renin-angiotensin system in a model of intense proteinuria and interstitial nephritis induced by protein overload. After uninephrectomy (UNX), Wistar-Kyoto rats received daily injections of 1 g BSA or saline for 8 days. The mean peak of proteinuria was observed at the fourth day (538Ϯ89 versus 3Ϯ1 mg/24 h in UNX controls; nϭ12; PϽ0.05) and was increased during the whole study period (at the eighth day: 438Ϯ49 mg/24 h; nϭ12; PϭNS). Morphological examination of the kidneys at the end of the study showed marked tubular lesions (atrophy, vacuolization, dilation, and casts), interstitial infiltration of mononuclear cells, and mesangial expansion. In relation to UNX control rats, renal cortex of BSA-overloaded rats showed an increment in the gene expression of angiotensinogen (2.4-fold) and angiotensin-converting enzyme (ACE) (2.1-fold), as well as a diminution in renin gene expression. No changes were observed in angiotensin type 1 (AT 1 ) receptor mRNA expression in both groups of rats. By in situ reverse transcription-polymerase chain reaction and immunohistochemistry, ACE expression (gene and protein) was mainly localized in proximal and distal tubules and in the glomeruli. By immunohistochemistry, angiotensinogen was localized only in proximal tubules, and AT 1 receptor was localized mainly in proximal and distal tubules. In the tubular brush border, an increase in ACE activity was also seen (5.5Ϯ0.5 versus 3.1Ϯ0.7 U/mg protein ϫ10 Ϫ4 in UNX control; nϭ7; PϽ0.05). Our results show that in the kidney of rats with intense proteinuria, ACE and angiotensinogen were upregulated, while gene expression of renin was inhibited and AT 1 was unmodified. On the whole, these data suggest an increase in Ang II intrarenal generation. Since Ang II can elicit renal cell growth and matrix production through the activation of AT 1 receptor, this peptide may be responsible for the tubulointerstitial lesions occurring in this model. These results suggest a novel mechanism by which proteinuria may participate in the progression of renal diseases. (Hypertension. 1999;33:732-739.)
Renal PTHrP was rapidly and transiently increased in rats with folic acid-induced acute renal failure, featuring as an early response gene. In addition, changes in ACE and Ang II expression were also found in these animals. PTHrP induces a mitogenic response in folic acid-damaged renal tubular cells both in vivo and in vitro. Our results support the notion that PTHrP up-regulation participates in the regenerative process in this model of acute renal failure and is a common event associated with the mechanisms of renal injury and repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.