A major requirement for the microsurgical repair of contour defects of the skin, for example, following removal of a skin cancer on the face, is a mass of vascularised subcutaneous tissue. Such tissue can be generated in vivo using basic tissue engineering principles. In previous studies in our laboratory, we have used a model comprising an arteriovenous (AV) shunt loop sandwiched in artificial dermis, placed in a cylindrical plastic growth chamber, and inserted subcutaneously to grow new connective tissue progressively up to 4 weeks. To learn more about the basic growth characteristics with this model, the same AV shunt loop within a chamber without added extracellular matrix was inserted subcutaneously into the groins of rats for 2, 4, or 12 weeks (n = 5 per group). There was a progressive increase in the mass and volume of tissue such that the chamber was two-thirds full after 12 weeks. Histological examination showed that at 2 weeks there was evidence of fibroblast and vascular outgrowth from the AV shunt, with the formation of granulation tissue, surrounded by a mass of coagulated exudate. At 4 weeks the connective tissue deposition was more extensive, with a mass of more mature granulation tissue containing considerable collagen. By 12 weeks there was an extensive, well vascularized mass of mature fibrous tissue. The blood vessels and residual adventitia of the AV shunt were the likely source of growth factors and of the cells which populated the chamber with new maturing connective tissue. A patent AV shunt in an isolated chamber appears to be the minimal requirement for the generation of new vascularized tissue that is potentially suitable for microsurgical transplantation.
In a recently described model for tissue engineering, an arteriovenous loop comprising the femoral artery and vein with interposed vein graft is fabricated in the groin of an adult male rat, placed inside a polycarbonate chamber, and incubated subcutaneously. New vascularized granulation tissue will generate on this loop for up to 12 weeks. In the study described in this paper three different extracellular matrices were investigated for their ability to accelerate the amount of tissue generated compared with a no‐matrix control. Poly‐d,l‐lactic‐co‐glycolic acid (PLGA) produced the maximal weight of new tissue and vascularization and this peaked at two weeks, but regressed by four weeks. Matrigel was next best. It peaked at four weeks but by eight weeks it also had regressed. Fibrin (20 and 80 mg/ml), by contrast, did not integrate with the generating vascularized tissue and produced less weight and volume of tissue than controls without matrix. The limiting factors to growth appear to be the chamber size and the capacity of the neotissue to integrate with the matrix. Once the sides of the chamber are reached or tissue fails to integrate, encapsulation and regression follow. The intrinsic position of the blood supply within the neotissue has many advantages for tissue and organ engineering, such as ability to seed the construct with stem cells and microsurgically transfer new tissue to another site within the individual. In conclusion, this study has found that PLGA and Matrigel are the best matrices for the rapid growth of new vascularized tissue suitable for replantation or transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.