Background & Aims
GPBAR1, also known as TGR5, is a G protein–coupled receptor activated by bile acids. Hepatic innate immune cells are involved in the immunopathogenesis of human liver diseases and in several murine hepatitis models. Here, by using genetic and pharmacological approaches, we provide evidence that GPBAR1 ligation attenuates the inflammation in rodent models of hepatitis.
Material and methods
Hepatitis was induced by concanavalin A (Con A) or α-galactosyl-ceramide (α-GalCer). 6b-Ethyl-3a,7b-dihydroxy-5b-cholan-24-ol (BAR501), a selective agonist of GPBAR1, was administrated by o.s.
Results
In the mouse models of hepatitis, the genetic ablation of Gpabar1 worsened the severity of liver injury and resulted in a type I NKT cells phenotype that was biased toward a NKT1, a proinflammatory, IFN-γ producing, NKT cells subtype. Further on, NKT cells from GPBAR1
–/–
mice were sufficient to cause a severe hepatitis when transferred to naïve mice. In contrast, GPBAR1 agonism rescued wild-type mice from acute liver damage and redirects the NKT cells polarization toward a NKT10, a regulatory, IL-10 secreting, type I NKT cell subset. In addition, GPBAR1 agonism significantly expanded the subset of IL-10 secreting type II NKT cells. RNAseq analysis of both NKT cells type confirmed that IL-10 is a major target for GPABR1. Accordingly, IL-10 gene ablation abrogated protection afforded by GPBAR1 agonism in the Con A model.
Conclusion
Present results illustrate a role for GPBAR1 in regulating liver NKT ecology. Because NKT cells are an essential component of liver immune system, our data provide a compelling evidence for a GPBAR1-IL-10 axis in regulating of liver immunity.
Drug-induced liver injury caused by acetaminophen (acetyl-para-aminophenol [APAP]) is the main cause of acute liver failure and liver transplantation in several Western countries. Whereas direct toxicity exerted by APAP metabolites is a key determinant for early hepatocytes injury, the recruitment of cells of innate immunity exerts a mechanistic role in disease progression, determining the clinical outcomes. GPBAR1 is a G protein-coupled receptor for secondary bile acids placed at the interface between liver sinusoidal cells and innate immunity. In this report, using genetic and pharmacological approaches, we demonstrate that whereas Gpbar1 gene deletion worsens the severity of liver injury, its pharmacological activation by 6b-ethyl-3a,7b-dihydroxy-5b-cholan-24-ol rescues mice from liver injury caused by APAP. This protective effect was supported by a robust attenuation of liver recruitment of monocyte-derived macrophages and their repolarization toward an anti-inflammatory phenotype. Macrophage depletion by gadolinium chloride pretreatment abrogated disease development, whereas their reconstitution by spleen-derived macrophage transplantation restored the sensitivity to APAP in a GPBAR1-dependent manner. RNA sequencing analyses demonstrated that GPBAR1 agonism modulated the expression of multiple pathways, including the chemokine CCL2 and its receptor, CCR2. Treating wild-type mice with an anti-CCL2 mAb attenuated the severity of liver injury. We demonstrated that negative regulation of CCL2 production by GPBAR1 agonism was promoter dependent and involved FOXO1. In conclusion, we have shown that GPBAR1 is an upstream modulator of CCL2/CCR2 axis at the sinusoidal cell/macrophage interface, providing a novel target in the treatment of liver damage caused by APAP.
Pancreatic cancer is a leading cause of cancer mortality and is projected to become the second-most common cause of cancer mortality in the next decade. While gene-wide association studies and next generation sequencing analyses have identified molecular patterns and transcriptome profiles with prognostic relevance, therapeutic opportunities remain limited. Among the genes that are upregulated in pancreatic ductal adenocarcinomas (PDAC), the leukaemia inhibitory factor (LIF), a cytokine belonging to IL-6 family, has emerged as potential therapeutic candidate. LIF is aberrantly secreted by tumour cells and promotes tumour progression in pancreatic and other solid tumours through aberrant activation of the LIF receptor (LIFR) and downstream signalling that involves the JAK1/STAT3 pathway. Since there are no LIFR antagonists available for clinical use, we developed an in silico strategy to identify potential LIFR antagonists and drug repositioning with regard to LIFR antagonists. The results of these studies allowed the identification of mifepristone, a progesterone/glucocorticoid antagonist, clinically used in medical abortion, as a potent LIFR antagonist. Computational studies revealed that mifepristone binding partially overlapped the LIFR binding site. LIF and LIFR are expressed by human PDAC tissues and PDAC cell lines, including MIA-PaCa-2 and PANC-1 cells. Exposure of these cell lines to mifepristone reverses cell proliferation, migration and epithelial mesenchymal transition induced by LIF in a concentration-dependent manner. Mifepristone inhibits LIFR signalling and reverses STAT3 phosphorylation induced by LIF. Together, these data support the repositioning of mifepristone as a potential therapeutic agent in the treatment of PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.