The BID database is freely available at http://tsailab.org/BID/ To have your protein of interest entered, contact Tiffany Fischer (tiffbrink@neo.tamu.edu) or Jerry Tsai at the email below
Light chain amyloidosis (AL), the most common systemic amyloidosis, is caused by the overproduction and the aggregation of monoclonal immunoglobulin light chains (LC) in target organs. Due to genetic rearrangement and somatic hypermutation, virtually, each AL patient presents a different amyloidogenic LC. Because of such complexity, the fine molecular determinants of LC aggregation propensity and proteotoxicity are, to date, unclear; significantly, their decoding requires investigating large sets of cases. Aiming to achieve generalizable observations, we systematically characterised a pool of thirteen sequence-diverse full length LCs. Eight amyloidogenic LCs were selected as responsible for severe cardiac symptoms in patients; five non-amyloidogenic LCs were isolated from patients affected by multiple myeloma. Our comprehensive approach (consisting of spectroscopic techniques, limited proteolysis, and X-ray crystallography) shows that low fold stability and high protein dynamics correlate with amyloidogenic LCs, while hydrophobicity, structural rearrangements and nature of the LC dimeric association interface (as observed in seven crystal structures here presented) do not appear to play a significant role in defining amyloid propensity. Based on the structural and biophysical data, our results highlight shared properties driving LC amyloid propensity, and these data will be instrumental for the design of synthetic inhibitors of LC aggregation.
The causes of thrombosis and pregnancy loss in antiphospholipid syndrome (APS) are still unknown, although several hypotheses have been proposed and hypofibrinolysis has been implicated. Anti-tissue-type plasminogen activator (tPA) antibodies may induce fibrinolytic defects and preliminary data indicate an association with thrombosis in APS. We measured plasma anti-tPA antibody levels in 91 consecutive patients with APS, 91 healthy controls, 40 patients with antiphospholipid antibodies without APS symptoms, and 23 patients with systemic lupus erythematosus (SLE) without antiphospholipid antibodies and APS symptoms. Patients with APS had anti-tPA antibody levels higher than controls (P ؍ .0001), patients with SLE (P ؍ .0001), and asymptomatic antiphospholipid patients (P ؍ .05). A subgroup of 53 patients had plasma levels of tPA antigen higher (P ؍ .0001) and tPA activity lower (P ؍ .05) than controls, with an inverse correlation (r ؍ ؊0.454; P ؍ .003) between anti-tPA antibody levels and tPA activity and no correlation with tPA antigen. The 2 patients with the highest antibody levels had tPA activity below the normal range. Their antibodies were, respectively, IgG1 and IgG3; both recognized human tPA, recombinant tPA, and the catalytic domain of tPA, but not  2 -glycoprotein I, prothrombin, or plasminogen. Our data indicate that anti-tPA antibodies specifically interacting with the catalytic domain of tPA can be found in patients with APS, representing a possible cause of hypofibrinolysis. (Blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.