Electro-oxidation processes are promising options for the removal of organic pollutants from water. The major appeal of these technologies is the possibility to avoid the addition of chemical reagents. However, a major limitation is associated with slow mass transfer that reduces the efficiency and hinders the potential for large-scale application of these technologies. Therefore, improving the reactor configuration is currently one of the most important areas for research and development. The recent development of a reactive electrochemical membrane (REM) as a flow-through electrode has proven to be a breakthrough innovation, leading to both high electrochemically active surface area and convection-enhanced mass transport of pollutants. This review summarizes the current state of the art on REMs for the electro-oxidation of organic compounds by anodic oxidation. Specific focuses on the electroactive surface area, mass transport, reactivity, fouling and stability of REMs are included. Recent advances in the development of sub-stoichiometric titanium oxide REMs as anodes have been made. These electrodes possess high electrical conductivity, reactivity (generation of OH), chemical/electrochemical stability, and suitable pore structure that allows for efficient mass transport. Further development of REMs strongly relies on the development of materials with suitable physico-chemical characteristics that produce electrodes with efficient mass transport properties, high electroactive surface area, high reactivity and long-term stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.