Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization
We report the first generation of coherent, tunable, variable-polarization, soft X-ray femtosecond pulses, generated by a\ud seeded free-electron laser (FEL) operating in the fresh bunch, two-stage harmonic upshift configuration. Characterization\ud of the radiation proves this FEL configuration can produce single-transverse-mode, narrow-spectral-bandwidth output\ud pulses of several tens of microjoules energy and low pulse-to-pulse wavelength jitter at final wavelengths of 10.8 nm and\ud below. The fresh bunch configuration enhances the FEL emission at high harmonic orders by avoiding a gain depression\ud due to the energy spread induced by the first-stage FEL interaction. Coherent signals measured down to 4.3 nm suggest\ud this configuration is directly scalable to photon energies that will enable scientific investigations below the carbon K-edge,\ud including access to the L-edges of many magnetic materials, with an energy per pulse unlocking the gate for experiments\ud in the soft X-ray region with close to Fourier-transform-limited pulses
Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.
FERMI@Elettra is a free electron-laser (FEL)-based user facility that, after two years of commissioning, started preliminary users' dedicated runs in 2011. At variance with other FEL user facilities, FERMI@Elettra has been designed to deliver improved spectral stability and longitudinal coherence. The adopted scheme, which uses an external laser to initiate the FEL process, has been demonstrated to be capable of generating FEL pulses close to the Fourier transform limit. We report on the first instance of FEL wavelength tuning, both in a narrow and in a large spectral range (fine-and coarse-tuning). We also report on two different experiments that have been performed exploiting such FEL tuning. We used fine-tuning to scan across the 1s-4p resonance in He atoms, at ≈23.74 eV (52.2 nm), detecting both UV-visible fluorescence (4p-2s, 400 nm) and EUV fluorescence (4p-1s, 52.2 nm). We used coarse-tuning to scan the M 4,5 absorption edge of Ge (∼29.5 eV) in the wavelength region 30-60 nm, measured in transmission geometry with a thermopile positioned on the rear side of a Ge thin foil.
Ultrafast extreme ultraviolet and X-ray free-electron lasers are set to revolutionize many domains such as bio-photonics and materials science, in a manner similar to optical lasers over the past two decades. Although their number will grow steadily over the coming decade, their complete characterization remains an elusive goal. This represents a significant barrier to their wider adoption and hence to the full realization of their potential in modern photon sciences. Although a great deal of progress has been made on temporal characterization and wavefront measurements at ultrahigh extreme ultraviolet and X-ray intensities, only few, if any progress on accurately measuring other key parameters such as the state of polarization has emerged. Here we show that by combining ultra-short extreme ultraviolet free electron laser pulses from FERMI with near-infrared laser pulses, we can accurately measure the polarization state of a free electron laser beam in an elegant, non-invasive and straightforward manner using circular dichroism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.