Supplemental Digital Content is Available in the Text.This unique multicenter approach provides high-quality evidence validating burrowing as a robust and reproducible outcome measure to infer the global effect of pain on rodents.
Background:Aberrant mitogen/extracellular signal-regulated kinase 5 (MEK5)–extracellular signal-regulated protein kinase 5 (ERK5)-mediated signalling has been implicated in a number of tumour types including prostate cancer (PCa). The molecular basis of ERK5-driven carcinogenesis and its clinical relevance remain to be fully characterised.Methods:Modulation of ERK5 expression or function in human PCa PC3 and PC3–ERK5 (stably transfected with ERK5) cells was performed using siRNA-mediated knockdown or the MEK inhibitor PD18435 respectively. In vitro significance of ERK5 signalling was assessed by assays for proliferation, motility, invasion and invadopodia. Expression of matrix metalloproteinases/tissue inhibitors of metalloproteases was determined by Q-RT–PCR. Extracellular signal-regulated protein kinase 5 expression in primary and metastatic PCa was examined using immunohistochemistry.Results:Reduction of ERK5 expression or signalling significantly inhibited the motility and invasive capability of PC3 cells. Extracellular signal-regulated protein kinase 5-mediated signalling significantly promoted formation of in vivo metastasis in an orthotopic PCa model (P<0.05). Invadopodia formation was also enhanced by forced ERK5 expression in PC3 cells. Furthermore, in metastatic PCa, nuclear ERK5 immunoreactivity was significantly upregulated when compared with benign prostatic hyperplasia and primary PCa (P=0.013 and P<0.0001, respectively).Conclusion:Our in vitro, in vivo and clinical data support an important role for the MEK5–ERK5 signalling pathway in invasive PCa, which represents a potential target for therapy in primary and metastatic PCa.
We report a systematic review and meta-analysis of research using animal models of chemotherapy-induced peripheral neuropathy (CIPN). We systematically searched 5 online databases in September 2012 and updated the search in November 2015 using machine learning and text mining to reduce the screening for inclusion workload and improve accuracy. For each comparison, we calculated a standardised mean difference (SMD) effect size, and then combined effects in a random-effects meta-analysis. We assessed the impact of study design factors and reporting of measures to reduce risks of bias. We present power analyses for the most frequently reported behavioural tests; 337 publications were included. Most studies (84%) used male animals only. The most frequently reported outcome measure was evoked limb withdrawal in response to mechanical monofilaments. There was modest reporting of measures to reduce risks of bias. The number of animals required to obtain 80% power with a significance level of 0.05 varied substantially across behavioural tests. In this comprehensive summary of the use of animal models of CIPN, we have identified areas in which the value of preclinical CIPN studies might be increased. Using both sexes of animals in the modelling of CIPN, ensuring that outcome measures align with those most relevant in the clinic, and the animal’s pain contextualised ethology will likely improve external validity. Measures to reduce risk of bias should be employed to increase the internal validity of studies. Different outcome measures have different statistical power, and this can refine our approaches in the modelling of CIPN.
Background and aims: Chemotherapy-induced peripheral neuropathy (CIPN) can be a severely disabling side-effect of commonly used cancer chemotherapeutics, requiring cessation or dose reduction, impacting on survival and quality of life. Our aim was to conduct a systematic review and meta-analysis of research using animal models of CIPN to inform robust experimental design. Methods: We systematically searched 5 online databases (PubMed, Web of Science, Citation Index, Biosis Previews and Embase (September 2012) to identify publications reporting in vivo CIPN modelling. Due to the number of publications and high accrual rate of new studies, we ran an updated search November 2015, using machine-learning and text mining to identify relevant studies. All data were abstracted by two independent reviewers. For each comparison we calculated a standardised mean difference effect size then combined effects in a random effects metaanalysis. The impact of study design factors and reporting of measures to reduce the risk of bias was assessed. We ran power analysis for the most commonly reported behavioural tests. Results: 341 publications were included. The majority (84%) of studies reported using male animals to model CIPN; the most commonly reported strain was Sprague Dawley rat. In modelling experiments, Vincristine was associated with the greatest increase in pain-related behaviour (-3.22 SD [-3.88; -2.56], n=152, p=0). The most commonly reported outcome measure was evoked limb withdrawal to mechanical monofilaments. Pain-related complex behaviours were rarely reported. The number of animals required to obtain 80% power with a significance level of 0.05 varied substantially across behavioural tests. Overall, studies were at moderate risk of bias, with modest reporting of measures to reduce the risk of bias. Conclusions: Here we provide a comprehensive summary of the field of animal models of CIPN and inform robust experimental design by highlighting measures to increase the internal and external validity of studies using animal models of CIPN. Power calculations and other factors, such as clinical relevance, should inform the choice of outcome measure in study design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.