COVID-19 patients elicit strong responses to the nucleocapsid (N) protein of SARS-CoV-2 but binding antibodies are also detected in prepandemic individuals, indicating potential crossreactivity with common cold human coronaviruses (HCoV) and questioning its utility in seroprevalence studies. We investigated the immunogenicity of the full-length and shorter fragments of the SARS-CoV-2 N protein, and the crossreactivity of antibodies with HCoV. We identified a C-terminus region in SARS-CoV2 N of minimal sequence homology with HCoV that was more specific for SARS-CoV-2 and highly immunogenic. IgGs to the full-length SARS-CoV-2 N also recognized N229E N, and IgGs to HKU1 N recognized SARS-CoV-2 N. Crossreactivity with SARS-CoV-2 was stronger for alpha-rather than beta-HCoV despite having less sequence identity, revealing the importance of conformational recognition. Higher preexisting IgG to OC43 N correlated with lower IgG to SARS-CoV-2 N in rRT-PCR negative individuals, reflecting less exposure and indicating a potential protective association. Antibodies to SARS-CoV-2 N were higher in patients with more severe and longer duration of symptoms and in females. IgGs remained stable for at least 3 months, while IgAs and IgMs declined faster. In conclusion, N protein is a primary target of SARS-CoV-2-specific and HCoV crossreactive antibodies, both of which may affect the acquisition of immunity to COVID-19.
Serological tests
are essential for the control and management
of COVID-19 pandemic (diagnostics and surveillance, and epidemiological
and immunity studies). We introduce a direct serological biosensor
assay employing proprietary technology based on plasmonics, which
offers rapid (<15 min) identification and quantification of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in
clinical samples, without signal amplification. The portable plasmonic
device employs a custom-designed multiantigen (RBD peptide and N protein)
sensor biochip and reaches detection limits in the low ng mL
–1
range employing polyclonal antibodies. It has also been implemented
employing the WHO-approved anti-SARS-CoV-2 immunoglobulin standard.
A clinical validation with COVID-19 positive and negative samples
(
n
= 120) demonstrates its excellent diagnostic sensitivity
(99%) and specificity (100%). This positions our biosensor as an accurate
and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology
to be employed both at laboratory and decentralized settings for the
disease management and for the evaluation of immunological status
during vaccination or treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.