Cancer immunotherapy has revolutionized cancer treatment, and it relies heavily on the comprehensive understanding of the immune landscape of the tumor microenvironment (TME). Here, we obtain a detailed immune cell atlas of esophageal squamous cell carcinoma (ESCC) at single-cell resolution. Exhausted T and NK cells, regulatory T cells (Tregs), alternatively activated macrophages and tolerogenic dendritic cells are dominant in the TME. Transcriptional profiling coupled with T cell receptor (TCR) sequencing reveal lineage connections in T cell populations. CD8 T cells show continuous progression from pre-exhausted to exhausted T cells. While exhausted CD4, CD8 T and NK cells are major proliferative cell components in the TME, the crosstalk between macrophages and Tregs contributes to potential immunosuppression in the TME. Our results indicate several immunosuppressive mechanisms that may be simultaneously responsible for the failure of immuno-surveillance. Specific targeting of these immunosuppressive pathways may reactivate anti-tumor immune responses in ESCC.
Deubiquitinases (DUBs) and noncoding RNAs have been the subjects of recent extensive studies regarding their roles in lung cancer, but the mechanisms involved are largely unknown. In our study, we used The Cancer Genome Atlas data set and bioinformatics analyses and identified USP21, a DUB, as a potential contributor to oncogenesis in non-small-cell lung cancer (NSCLC). We further demonstrated that USP21 was highly expressed in NSCLCs. We then conducted a series of in vitro and in vivo assays to explore the effect of USP21 on NSCLC progression and the underlying mechanism involved. USP21 promoted NSCLC cell proliferation, migration, and invasion and in vivo tumor growth by stabilizing a well-known oncogene, Yin Yang-1 (YY1), via mediating its deubiquitination. Furthermore, YY1 transcriptionally regulates the expression of SNHG16. Moreover, StarBase bioinformatics analyses predicted that miR-4500 targets SNHG16 and USP21. A series of in vitro experiments indicated that SNHG16 increased the expression of USP21 through miR-4500. In summary, the USP21/YY1/SNHG16 axis plays a role in promoting the progression of NSCLC. Therefore, the USP21/YY1/SNHG16/miR-4500 axis may be a potential therapeutic target in NSCLC treatment.
BackgroundGastric cancer is a leading causes of cancer-related deaths ,but the underlying molecular mechanisms of its progression are largely unknown. Differentiated embryonic chondrocyte-expressed gene 1 (DEC1), is an important transcription factor involved in the progression of tumors and has recently been identified to be strongly inducible by hypoxia. Little is known about the contribution of DEC1 to the intracellular hypoxia and proliferation signaling events in gastric cancer.MethodsImmunohistochemistry was used to detect the expression of DEC1, hypoxia-inducible factor 1(HIF-1α) and Ki67 in 173 human gastric cancer samples and adjacent non-tumor tissues samples. The relationship between DEC1, HIF-1α and Ki67 was evaluated.ResultsDEC1 protein was persistently expressed in the nucleus and cytoplasm of gastric cancer tissue. The protein expression of DEC1 and HIF-1α in tumour tissues was 83.8% and 54.3%, respectively, and was significantly higher than that in adjacent normal tissues (83.8% vs 23.7%, P <0.001; 54.3% vs 12.7%, P< 0.001). The expression of DEC1 and HIF-1α was associated with poor histological differentiation. (P < 0. 01). Furthermore, DEC1 level was positively correlated with HIF-1α (P < 0. 01, r=0.290) and Ki67 expression (P < 0. 01, r=0.249).ConclusionThe upregulation of DEC1 may play an important role in hypoxia regulation and cell proliferation in gastric cancer. The relevant molecular mechanism requires further investigation.Virtual SlidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1794565980889391med.motic.com/MoticGallery/Slide?id=08d180cd-5fdb-4cee-830a-0b1fef3311f2&user=2C69F0D6-A478-4A2B-ABF0-BB36763E8025med.motic.com/MoticGallery/Slide?id=4762991d-3f2f-43aa-b4bf-ecdd2c2ae3ec&user=2C69F0D6-A478-4A2B-ABF0-BB36763E8025med.motic.com/MoticGallery/Slide?id=2717f209-b3fd-4e71-b621-0d60ea507a82&user=2C69F0D6-A478-4A2B-ABF0-BB36763E8025
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.