Trapezohedral Pt nanocrystals enclosed by 24 high-index {522} facets have been successfully prepared for the first time in high yield by a direct square wave electrodeposition method. They exhibit a significantly enhanced catalytic activity for C-1 molecules (CO, CH(3)OH, HCOOH).
Recent progresses in proton exchange membrane fuel cell electrocatalysts are reviewed in this article in terms of cathodic and anodic reactions with a focus on rational design. These designs are based around gaining active sites using model surface studies and include high-index faceted Pt and Pt-alloy nanocrystals for anodic electrooxidation reactions as well as Pt-based alloy/core-shell structures and carbon-based non-precious metal catalysts for cathodic oxygen reduction reactions (ORR). High-index nanocrystals, alloy nanoparticles, and support effects are highlighted for anodic catalysts, and current developments in ORR electrocatalysts with novel structures and different compositions are emphasized for cathodic catalysts. Active site structures, catalytic performances, and stability in fuel cells are also reviewed for carbon-based non-precious metal catalysts. In addition, further developmental perspectives and the current status of advanced fuel cell electrocatalysts are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.