Zero-valent sulfur (ZVS) has been shown to be a major sulfur intermediate in the deep-sea cold seep of the South China Sea based on our previous work, however, the microbial contribution to the formation of ZVS in cold seep has remained unclear. Here, we describe a novel thiosulfate oxidation pathway discovered in the deep-sea cold seep bacterium Erythrobacter flavus 21–3, which provides a new clue about the formation of ZVS. Electronic microscopy, energy-dispersive, and Raman spectra were used to confirm that E. flavus 21–3 effectively converts thiosulfate to ZVS. We next used a combined proteomic and genetic method to identify thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) playing key roles in the conversion of thiosulfate to ZVS. Stoichiometric results of different sulfur intermediates further clarify the function of TsdA in converting thiosulfate to tetrathionate ( − O 3 S–S–S–SO 3 − ), SoxB in liberating sulfone from tetrathionate to form ZVS and sulfur dioxygenases (SdoA/SdoB) in oxidizing ZVS to sulfite under some conditions. Notably, homologs of TsdA, SoxB, and SdoA/SdoB widely exist across the bacteria including in Erythrobacter species derived from different environments. This strongly indicates that this novel thiosulfate oxidation pathway might be frequently used by microbes and plays an important role in the biogeochemical sulfur cycle in nature.
Candidatus Izemoplasma, an intermediate in the reductive evolution from Firmicutes to Mollicutes, was proposed to represent a novel class of free-living wall-less bacteria within the phylum Tenericutes. Unfortunately, the paucity of pure cultures has limited further insights into their physiological and metabolic features as well as ecological roles. Here, we report the first successful isolation of an Izemoplasma representative from the deep-sea methane seep, strain zrk13, using a DNA degradation-driven method given Izemoplasma’s prominent DNA-degradation potentials. We further present a detailed description of the physiological, genomic and metabolic traits of the novel strain, which allows for the first time the reconstruction of the metabolic potential and lifestyle of a member of the tentatively defined Candidatus Izemoplasma. On the basis of the description of strain zrk13, the novel species and genus Xianfuyuplasma coldseepsis is proposed. Using a combined biochemical and transcriptomic method, we further show the supplement of organic matter, thiosulfate or bacterial genomic DNA could evidently promote the growth of strain zrk13. In particular, strain zrk13 could degrade and utilize the extracellular DNA for growth in both laboraterial and deep-sea conditions. Moreover, the predicted genes determining DNA-degradation broadly distribute in the genomes of other Izemoplasma members. Given that extracellular DNA is a particularly crucial phosphorus as well as nitrogen and carbon source for microorganisms in the seafloor, Izemoplasma bacteria are thought to be important contributors to the biogeochemical cycling in the deep ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.