Urbanization has resulted in dry/wet island effects in built-up areas. Compared to the limited number of observational datasets, simulations can provide data with richer spatial distribution, thereby proving to be more helpful for revealing the spatial distribution of dry/wet islands. This study simulated dry/wet island effects during typical summer and winter conditions in Beijing by coupling the Artificial Water Dissipation Urban Canopy Model with the Weather Research and Forecasting model. Observations of relative humidity, absolute humidity, and temperature from weather stations in Beijing were used to verify the model. The results showed that in 2020, Beijing was prone to be a dry island during summer, with the relative humidity approximately 5–10% lower than the surrounding suburbs. The dry island effect was not obvious in winter, and Beijing tended to be a wet island. The influence of artificial water dissipation on dry/wet islands is higher in winter than in summer. By considering the water vapor from artificial water dissipation, humidity in urban areas can be simulated more accurately.
The scientific and accurate evaluation of water resources carrying capacity has good social, environmental and resource benefits. Reasonable selection of evaluation parameters is the key step to realize efficient and sustainable development of water resources. Taking Zanhuang County in the North China Plain as the research area, this study selected fuzzy comprehensive evaluation models with different weights in the established evaluation index framework to explore the sources of uncertainty affecting the evaluation results of water resources carrying capacity. By using the sensitivity analysis method of index weight, the index with the biggest influence factor on the evaluation result is selected to reduce the uncertainty problems such as index redundancy and small correlation degree. The results show that the correlation and reliable of comprehensive evaluation value obtained by different weight methods is different. The evaluation result obtained by using the analytic hierarchy process is more relevant than the entropy weight method, and it is more consistent with the actual load-bearing situation. The study of sensitivity index shows that water area index is the biggest factor affecting the change of evaluation results, and water resources subsystem and socio-economic subsystem play a dominant role in the whole evaluation framework. The results show that strengthening the data quality control of index assignment and weight method is helpful to reduce the error of water resources carrying capacity evaluation. It can also provide scientific basis for the improvement of fuzzy evaluation model.
Urban artificial water dissipation is a concomitant process of human water use in built‐up areas that can absorb heat through evapotranspiration, reduce air temperature, transfer surface water to the atmosphere, and participate in the urban water cycle. In the context of increased urbanization, the impact of artificial water dissipation on urban climates cannot be ignored. In this study, calculation models for artificial water dissipation from different underlying surface types (buildings, hardened ground, soil, and vegetation) were introduced into an urban canopy model and coupled with the weather research and forecasting (WRF) model for mesoscale weather simulations of the Beijing area. Observational datasets of temperature and humidity from automatic weather stations in Beijing were used for validation. Results showed that the coupled model could reproduce the temperature and humidity of urban weather stations in Beijing more accurately compared to simulations that did not employ an urban canopy model or that adopted a traditional urban canopy model. In the Beijing urban area, the latent heat flux of NON, urban canopy model, and artificial water dissipation into the UCM are approximately 0, 35, and 65 W/m2, respectively, and the anthropogenic latent heat is about 30 W/m2. Incorporating urban artificial water dissipation into the urban canopy model reduced the urban air temperature by 0.2°C and increased the specific humidity by 0.6 g/kg, alleviating urban heat island effects and increasing humidity. These findings indicate that artificial urban water dissipation plays an important role in urban weather and climate that should be considered by urban canopy models. In the future, this model can be coupled into WRF for more accurate mesoscale weather simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.