Covalent linkage formation is a very important mechanism for many covalent drugs to work. However, partly due to the limitations of proper computational tools for covalent docking, most covalent drugs are not discovered systematically. In this article, we present a new covalent docking package, the CovalentDock, built on the top of the source code of Autodock. We developed an empirical model of free energy change estimation for covalent linkage formation, which is compatible with existing scoring functions used in docking, while handling the molecular geometry constrains of the covalent linkage with special atom types and directional grid maps. Integrated preparation scripts are also written for the automation of the whole covalent docking workflow. The result tested on existing crystal structures with covalent linkage shows that CovalentDock can reproduce the native covalent complexes with significant improved accuracy when compared with the default covalent docking method in Autodock. Experiments also suggest that CovalentDock is capable of covalent virtual screening with satisfactory enrichment performance. In addition, the investigation on the results also shows that the chirality and target selectivity along with the molecular geometry constrains are well preserved by CovalentDock, showing great capability of this method in the application for covalent drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.