Chemical modification of omega-conotoxin GVIA (omega-CgTXGVIA) was performed using nonsaturating concentrations of acetic anhydride to generate seven distinct derivatives. Following separation of these peptides using reverse-phase HPLC (RP-HPLC), their individual molecular weights were determined using fast bombardment mass spectrometry (FAB-MS). Three peptides contained a single acetylated amino group, three possessed two acetylated amino groups, and the last contained three acetylations. For each peptide, the specific site of acetylation was confirmed using a scheme of tryptic digestion, under nonreducing conditions, followed by RP-HPLC and FAB-MS. Biological profiles for each peptide were obtained by analyzing their capacity to displace native 125I-omega-CgTx GVIA binding to rat hippocampal membranes and to block K(+)-stimulated 45Ca2+ influx into chick brain synaptosomes. The data indicate that successive additions of acetyl moieties to omega-CgTx GVIA lead to a loss of both binding affinity and Ca2+ influx inhibitory potency. Within the monoacetylated series, acetylation of the amino terminal of Cys-1, as compared to the epsilon-amino group of either Lys-2 or Lys-24, leads to the greatest shift in potency. In summary, these results indicate that basic (i.e., primary amino) groups, which are brought into close proximity as a result of disulfide bridging, are important in the functional blockade of neuronal Ca2+ channels by omega-CgTx GVIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.