RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences, collating information on ncRNA sequences of all types from a broad range of organisms. We have recently added a new genome mapping pipeline that identifies genomic locations for ncRNA sequences in 296 species. We have also added several new types of functional annotations, such as tRNA secondary structures, Gene Ontology annotations, and miRNA-target interactions. A new quality control mechanism based on Rfam family assignments identifies potential contamination, incomplete sequences, and more. The RNAcentral database has become a vital component of many workflows in the RNA community, serving as both the primary source of sequence data for academic and commercial groups, as well as a source of stable accessions for the annotation of genomic and functional features. These examples are facilitated by an improved RNAcentral web interface, which features an updated genome browser, a new sequence feature viewer, and improved text search functionality. RNAcentral is freely available at https://rnacentral.org.
Key Points Question What genes and genomic processes underlie risk of sporadic Parkinson disease? Findings This genetic association study integrated Parkinson disease genome-wide association study data and brain-derived gene regulation data using various complementary bioinformatic tools and identified 11 candidate genes with evidence of disease-associated regulatory changes. Coexpression and protein level analyses of these genes demonstrated a significant functional association with known mendelian Parkinson disease genes. Meaning This study suggests that gene regulation data may be used to identify candidate genes and pathways involved in sporadic Parkinson disease.
A BS TRACT: Background: Although the leucine-rich repeat kinase 2 p.G2019S mutation has been demonstrated to be a strong risk factor for PD, factors that contribute to penetrance among carriers, other than aging, have not been well identified. Objectives: To evaluate whether a cumulative genetic risk identified in the recent genome-wide study is associated with penetrance of PD among p.G2019S mutation carriers. Methods: We included p.G2019S heterozygote carriers with European ancestry in three genetic cohorts in which the mutation carriers with and without PD were selectively recruited. We also included the carriers from two data sets: one from a case-control setting without selection of mutation carriers and the other from a population sampling. Associations between polygenic risk score constructed from 89 variants reported recently and PD were tested and meta-analyzed. We also explored the interaction of age and PRS.Results: After excluding eight homozygotes, 833 p. G2019S heterozygote carriers (439 PD and 394 unaffected) were analyzed. Polygenic risk score was associated with a higher penetrance of PD (odds ratio: 1.34; 95% confidence interval: [1.09, 1.64] per +1 standard deviation; P = 0.005). In addition, associations with polygenic risk score and penetrance were stronger in the younger participants (main effect: odds ratio 1.28 [1.04, 1.58] per +1 standard deviation; P = 0.022; interaction effect: odds ratio 0.78 [0.64, 0.94] per +1 standard deviation and + 10 years of age; P = 0.008). Conclusions: Our results suggest that there is a genetic contribution for penetrance of PD among p.G2019S carriers. These results have important etiological consequences and potential impact on the selection of subjects for clinical trials.
High-throughput studies constitute an essential and valued source of information for researchers. However, high-throughput experimental workflows are often complex, with multiple data sets that may contain large numbers of false positives. The representation of high-throughput data in the Gene Ontology (GO) therefore presents a challenging annotation problem, when the overarching goal of GO curation is to provide the most precise view of a gene's role in biology. To address this, representatives from annotation teams within the GO Consortium reviewed high-throughput data annotation practices. We present an annotation framework for high-throughput studies that will facilitate good standards in GO curation and, through the use of new high-throughput evidence codes, increase the visibility of these annotations to the research community.
The role of circulating proteins in Alzheimer’s disease and related dementias is unknown. Using a follow-up of two decades, 4953 plasma proteins, and discovery (Whitehall II) and replication cohort (ARIC), we examined plasma proteins associated with cognitive decline rate and dementia. After replication and adjustment for known dementia risk factors, fifteen proteins were associated with cognitive decline rate and dementia. None of these were amyloid, tau, or neurofilament-related proteins. Currently approved medications can target five of the proteins. The results support systemic pathogenesis of dementias, may aid in early diagnosis, and suggest potential targets for drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.