Gut microbiome profoundly affects many aspects of host physiology and behaviors. Here we report that gut microbiome modulates aggressive behaviors in Drosophila. We found that germ-free males showed substantial decrease in inter-male aggression, which could be rescued by microbial re-colonization. These germ-free males are not as competitive as wild-type males for mating with females, although they displayed regular levels of locomotor and courtship behaviors. We further found that Drosophila microbiome interacted with diet during a critical developmental period for the proper expression of octopamine and manifestation of aggression in adult males. These findings provide insights into how gut microbiome modulates specific host behaviors through interaction with diet during development.
Plants generate a plethora of secondary compounds (toxins) that potently influence the breadth of the breeding niches of animals, including Drosophila. Capsaicin is an alkaloid irritant from hot chili peppers, and can act as a deterrent to affect animal behaviors, such as egg laying choice. However, the mechanism underlying this ovipositional avoidance remains unknown. Here, we report that Drosophila females exhibit a robust ovipositional aversion to capsaicin. First, we found that females were robustly repelled from laying eggs on capsaicin-containing sites. Second, genetic manipulations show that the ovipositional aversion to capsaicin is mediated by activation of nociceptive neurons expressing the painless gene. Finally, we found that capsaicin compromised the health and lifespan of flies through intestinal dysplasia and oxidative innate immunity. Overall, our study suggests that egg-laying sensation converts capsaicin into an aversive behavior for female Drosophila, mirroring an adaptation to facilitate the survival and fitness of both parents and offspring.
Metazoans harbor a wealth of symbionts that are ever-changing the environment by taking up resources and/or excreting metabolites. One such common environmental modification is a change in pH. Conventional wisdom holds that symbionts facilitate the survival and production of their hosts in the wild, but this notion lacks empirical evidence. Here, we report that symbiotic bacteria in the genus Enterococcus attenuate the oviposition avoidance of alkaline environments in Drosophila. We studied the effects of alkalinity on oviposition preference for the first time, and found that flies are robustly disinclined to oviposit on alkali-containing substrates. This innate repulsion to alkaline environments is explained, in part, by the fact that alkalinity compromises the health and lifespan of both offspring and parent Drosophila. Enterococcus dramatically diminished or even completely reversed the ovipositional avoidance of alkalinity in Drosophila. Mechanistically, Enterococcus generate abundant lactate during fermentation, which neutralizes the residual alkali in an egg-laying substrate. In conclusion, Enterococcus protects Drosophila from alkali stress by acidifying the ovipositional substrate, and ultimately improves the fitness of the Drosophila population. Our results demonstrate that symbionts are profound factors in the Drosophila ovipositional decision, and extend our understanding of the intimate interactions between Drosophila and their symbionts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.