Long-read and strand-specific sequencing technologies together facilitate the de novo assembly of high-quality haplotype-resolved human genomes without parent–child trio data. We present 64 assembled haplotypes from 32 diverse human genomes. These highly contiguous haplotype assemblies (average contig N50: 26 Mbp) integrate all forms of genetic variation even across complex loci. We identify 107,590 structural variants (SVs), of which 68% are not discovered by short-read sequencing, and 278 SV hotspots (spanning megabases of gene-rich sequence). We characterize 130 of the most active mobile element source elements and find that 63% of all SVs arise by homology-mediated mechanisms. This resource enables reliable graph-based genotyping from short reads of up to 50,340 SVs, resulting in the identification of 1,526 expression quantitative trait loci as well as SV candidates for adaptive selection within the human population.
any diseases have been linked to SVs, most often defined as genomic changes at least 50 bp in size, but SVs are challenging to detect accurately. Conditions linked to SVs include autism 1 , schizophrenia, cardiovascular disease 2 , Huntington's disease and several other disorders 3. Far fewer SVs exist in germline genomes relative to small variants, but SVs affect more base pairs, and each SV might be more likely to affect phenotype 4-6. Although next-generation sequencing technologies can detect many SVs, each technology and analysis method has different strengths and weaknesses. To enable the community to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.