Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process.
A moderate loss of miR-122 function correlates with up-regulation of seed-matched genes and down-regulation of mitochondrially localized genes in both human hepatocellular carcinoma and in normal mice treated with anti-miR-122 antagomir.Putative direct targets up-regulated with loss of miR-122 and secondary targets down-regulated with loss of miR-122 are conserved between human beings and mice and are rapidly regulated in vitro in response to miR-122 over- and under-expression.Loss of miR-122 secondary target expression in either tumorous or adjacent non-tumorous tissue predicts poor survival of heptatocellular carcinoma patients.
We sought to determine the skeletal muscle genome-wide DNA methylation and mRNA responses to one bout of lower load (LL) versus higher load (HL) resistance exercise. Trained college-aged males (n = 11, 23 ± 4 years old, 4 ± 3 years self-reported training) performed LL or HL bouts to failure separated by one week. The HL bout (i.e., 80 Fail) consisted of four sets of back squats and four sets of leg extensions to failure using 80% of participants estimated one-repetition maximum (i.e., est. 1-RM). The LL bout (i.e., 30 Fail) implemented the same paradigm with 30% of est. 1-RM. Vastus lateralis muscle biopsies were collected before, 3 h, and 6 h after each bout. Muscle DNA and RNA were batch-isolated and analyzed using the 850k Illumina MethylationEPIC array and Clariom S mRNA microarray, respectively. Performed repetitions were significantly greater during the 30 Fail versus 80 Fail (p < 0.001), although total training volume (sets x reps x load) was not significantly different between bouts (p = 0.571). Regardless of bout, more CpG site methylation changes were observed at 3 h versus 6 h post exercise (239,951 versus 12,419, respectively; p < 0.01), and nuclear global ten-eleven translocation (TET) activity, but not global DNA methyltransferase activity, increased 3 h and 6 h following exercise regardless of bout. The percentage of genes significantly altered at the mRNA level that demonstrated opposite DNA methylation patterns was greater 3 h versus 6 h following exercise (~75% versus ~15%, respectively). Moreover, high percentages of genes that were up- or downregulated 6 h following exercise also demonstrated significantly inversed DNA methylation patterns across one or more CpG sites 3 h following exercise (65% and 82%, respectively). While 30 Fail decreased DNA methylation across various promoter regions versus 80 Fail, transcriptome-wide mRNA and bioinformatics indicated that gene expression signatures were largely similar between bouts. Bioinformatics overlay of DNA methylation and mRNA expression data indicated that genes related to “Focal adhesion,” “MAPK signaling,” and “PI3K-Akt signaling” were significantly affected at the 3 h and 6 h time points, and again this was regardless of bout. In conclusion, extensive molecular profiling suggests that post-exercise alterations in the skeletal muscle DNA methylome and mRNA transcriptome elicited by LL and HL training bouts to failure are largely similar, and this could be related to equal volumes performed between bouts.
BackgroundmRNA profiling has become an important tool for developing and validating prognostic assays predictive of disease treatment response and outcome. Archives of annotated formalin-fixed paraffin-embedded tissues (FFPET) are available as a potential source for retrospective studies. Methods are needed to profile these FFPET samples that are linked to clinical outcomes to generate hypotheses that could lead to classifiers for clinical applications.MethodsWe developed a two-color microarray-based profiling platform by optimizing target amplification, experimental design, quality control, and microarray content and applied it to the profiling of FFPET samples. We profiled a set of 50 fresh frozen (FF) breast cancer samples and assigned class labels according to the signature and method by van 't Veer et al [1] and then profiled 50 matched FFPET samples to test how well the FFPET data predicted the class labels. We also compared the sorting power of classifiers derived from FFPET sample data with classifiers derived from data from matched FF samples.ResultsWhen a classifier developed with matched FF samples was applied to FFPET data to assign samples to either "good" or "poor" outcome class labels, the classifier was able to assign the FFPET samples to the correct class label with an average error rate = 12% to 16%, respectively, with an Odds Ratio = 36.4 to 60.4, respectively. A classifier derived from FFPET data was able to predict the class label in FFPET samples (leave-one-out cross validation) with an error rate of ~14% (p-value = 3.7 × 10-7). When applied to the matched FF samples, the FFPET-derived classifier was able to assign FF samples to the correct class labels with 96% accuracy. The single misclassification was attributed to poor sample quality, as measured by qPCR on total RNA, which emphasizes the need for sample quality control before profiling.ConclusionWe have optimized a platform for expression analyses and have shown that our profiling platform is able to accurately sort FFPET samples into class labels derived from FF classifiers. Furthermore, using this platform, a classifier derived from FFPET samples can reliably provide the same sorting power as a classifier derived from matched FF samples. We anticipate that these techniques could be used to generate hypotheses from archives of FFPET samples, and thus may lead to prognostic and predictive classifiers that could be used, for example, to segregate patients for clinical trial enrollment or to guide patient treatment.
The host epigenetic landscape rapidly changes during SARS-CoV-2 infection, and evidence suggest that severe COVID-19 is associated with durable scars to the epigenome. Specifically, aberrant DNA methylation changes in immune cells and alterations to epigenetic clocks in blood relate to severe COVID-19. However, a longitudinal assessment of DNA methylation states and epigenetic clocks in blood from healthy individuals prior to and following test-confirmed non-hospitalized COVID-19 has not been performed. Moreover, the impact of mRNA COVID-19 vaccines upon the host epigenome remains understudied. Here, we first examined DNA methylation states in the blood of 21 participants prior to and following test-confirmed COVID-19 diagnosis at a median time frame of 8.35 weeks; 756 CpGs were identified as differentially methylated following COVID-19 diagnosis in blood at an FDR adjusted p-value < 0.05. These CpGs were enriched in the gene body, and the northern and southern shelf regions of genes involved in metabolic pathways. Integrative analysis revealed overlap among genes identified in transcriptional SARS-CoV-2 infection datasets. Principal component-based epigenetic clock estimates of PhenoAge and GrimAge significantly increased in people over 50 following infection by an average of 2.1 and 0.84 years. In contrast, PCPhenoAge significantly decreased in people fewer than 50 following infection by an average of 2.06 years. This observed divergence in epigenetic clocks following COVID-19 was related to age and immune cell-type compositional changes in CD4+ T cells, B cells, granulocytes, plasmablasts, exhausted T cells, and naïve T cells. Complementary longitudinal epigenetic clock analyses of 36 participants prior to and following Pfizer and Moderna mRNA-based COVID-19 vaccination revealed that vaccination significantly reduced principal component-based Horvath epigenetic clock estimates in people over 50 by an average of 3.91 years for those who received Moderna. This reduction in epigenetic clock estimates was significantly related to chronological age and immune cell-type compositional changes in B cells and plasmablasts pre- and post-vaccination. These findings suggest the potential utility of epigenetic clocks as a biomarker of COVID-19 vaccine responses. Future research will need to unravel the significance and durability of short-term changes in epigenetic age related to COVID-19 exposure and mRNA vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.