Acetaminophen (APAP) overdose is a common cause of drug-induced acute liver failure. Although hepatocyte cell death is considered to be the critical event in APAP-induced hepatotoxicity, the underlying mechanism remains unclear. Ferroptosis is a newly discovered type of cell death that is caused by a loss of cellular redox homeostasis. As glutathione (GSH) depletion triggers APAP-induced hepatotoxicity, we investigated the role of ferroptosis in a murine model of APAP-induced acute liver failure. APAP-induced hepatotoxicity (evaluated in terms of ALT, AST, and the histopathological score), lipid peroxidation (4-HNE and MDA), and upregulation of the ferroptosis maker PTGS2 mRNA were markedly prevented by the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1). Fer-1 treatment also completely prevented mortality induced by high-dose APAP. Similarly, APAP-induced hepatotoxicity and lipid peroxidation were prevented by the iron chelator deferoxamine. Using mass spectrometry, we found that lipid peroxides derived from n-6 fatty acids, mainly arachidonic acid, were elevated by APAP, and that auto-oxidation is the predominant mechanism of APAP-derived lipid oxidation. APAP-induced hepatotoxicity was also prevented by genetic inhibition of acyl-CoA synthetase long-chain family member 4 or α-tocopherol supplementation. We found that ferroptosis is responsible for APAP-induced hepatocyte cell death. Our findings provide new insights into the mechanism of APAP-induced hepatotoxicity and suggest that ferroptosis is a potential therapeutic target for APAP-induced acute liver failure.
Hepatic ischemia-reperfusion (I/R) injury is a major problem in liver transplantation (LT). Although hepatocyte cell death is the initial event in hepatic I/R injury, the underlying mechanism remains unclear. In the present study, we retrospectively analyzed the clinical data of 202 pediatric living donor LT and found that a high serum ferritin level, a marker of iron overload, of the donor is an independent risk factor for liver damage after LT. Since ferroptosis has been recently discovered as an iron-dependent cell death that is triggered by a loss of cellular redox homeostasis, we investigated the role of ferroptosis in a murine model of hepatic I/R injury, and found that liver damage, lipid peroxidation, and upregulation of the ferroptosis marker Ptgs2 were induced by I/R, and all of these manifestations were markedly prevented by the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or α-tocopherol. Fer-1 also inhibited hepatic I/R-induced inflammatory responses. Furthermore, hepatic I/R injury was attenuated by iron chelation by deferoxamine and exacerbated by iron overload with a high iron diet. These findings demonstrate that iron overload is a novel risk factor for hepatic I/R injury in LT, and ferroptosis contributes to the pathogenesis of hepatic I/R injury.
K E Y W O R D Scell death, liver transplantation/hepatology, liver transplantation: living donor, translational research/science
These findings demonstrate that excess SFAs cause intracellular crystallization and subsequent lysosomal dysfunction, leading to the activation of the NLRP3 inflammasome, and provide novel insights into the pathogenesis of metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.