MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron-ionization mass spectrometry (EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)-MS(n) data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10,286 volatile natural and synthetic compounds, and 3045 ESI-MS(2) data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS(2) data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS(2) data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS(2) data on an identical compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21-23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.
We found that caveolin-2 is targeted to the surface of lipid droplets (Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K., and Nomura, R. (2001) J. Cell Biol. 152, 1079 -1085) and hypothesized that the lipid droplet surface is a kind of membrane. To elucidate the characteristics of the lipid droplet surface, we isolated lipid droplets from HepG2 cells and analyzed them by cryoelectron microscopy and by mass spectrometry. By use of cryoelectron microscopy at the stage temperature of 4.2 K, the lipid droplet surface was observed as a single line without any fixation or staining, indicating the presence of a single layer of phospholipids. This result appeared consistent with the hypothesis that the lipid droplet surface is derived from the cytoplasmic leaflet of the endoplasmic reticulum membrane and may be continuous to it. However, mass spectrometry revealed that the fatty acid composition of phosphatidylcholine and lysophosphatidylcholine in lipid droplets is different from that of the rough endoplasmic reticulum. The ample presence of free cholesterol in lipid droplets also suggests that their surface is differentiated from the bulk endoplasmic reticulum membrane. On the other hand, although caveolin-2 and adipose differentiation-related protein, both localizing in lipid droplets, were enriched in the low density floating fraction, the fatty acid composition of the fraction was distinct from lipid droplets. Collectively, the result indicates that the lipid droplet surface is a hemi-membrane or a phospholipid monolayer containing cholesterol but is compositionally different from the endoplasmic reticulum membrane or the sphingolipid/cholesterol-rich microdomain.Lipid droplets have been regarded as a depot of neutral lipids. They exist most abundantly in adipose cells and steroidproducing cells but can be found in virtually any kind of cell. The core of lipid droplets is occupied by triacylglycerol and cholesterol ester in various ratios depending on the cell type (1), but information on the lipid droplet surface has been scarce. Recently we as well as others showed that caveolins can exist in the lipid droplet surface (2-4). Caveolins, i.e. caveolin-1, 2, 3, are membrane proteins that are incorporated to the sphingolipid/cholesterol-enriched membrane microdomain and form the framework of caveolae (5). Furthermore, lipid droplets were reported to contain other microdomain proteins, i.e. Lyn and mitogen-activated protein kinase, as well as abundant free cholesterol (6 -8). These results suggest that the lipid droplet surface is a kind of membrane and that it might have some similarity to the microdomain.However, electron microscopy of conventional resin-embedded ultrathin sections cannot visualize any membranous structure around the lipid droplet. In the ultrathin section of specimens fixed by aldehydes and then by osmium tetroxide, the lipid droplet content appears vacant, and its periphery is usually seen as a thin intermittent line. In many diagrams, the lipid droplet surface has been depicted as a phospholipid ...
Elucidation of molecular mechanisms that regulate synapse formation is required for the understanding of neural wiring, higher brain functions, and mental disorders. Despite the wealth of in vitro information, fundamental questions about how glutamatergic synapses are formed in the mammalian brain remain unanswered. Glutamate receptor (GluR) delta2 is essential for cerebellar synapse formation in vivo. Here, we show that the N-terminal domain (NTD) of GluRdelta2 interacts with presynaptic neurexins (NRXNs) through cerebellin 1 precursor protein (Cbln1). The synaptogenic activity of GluRdelta2 is abolished in cerebellar primary cultures from Cbln1 knockout mice and is restored by recombinant Cbln1. Knockdown of NRXNs in cerebellar granule cells also hinders the synaptogenic activity of GluRdelta2. Both the NTD of GluRdelta2 and the extracellular domain of NRXN1beta suppressed the synaptogenic activity of Cbln1 in cerebellar primary cultures and in vivo. These results suggest that GluRdelta2 mediates cerebellar synapse formation by interacting with presynaptic NRXNs through Cbln1.
Influenza A viruses are a major cause of mortality. Given the potential for future lethal pandemics, effective drugs are needed for the treatment of severe influenza such as that caused by H5N1 viruses. Using mediator lipidomics and bioactive lipid screen, we report that the omega-3 polyunsaturated fatty acid (PUFA)-derived lipid mediator protectin D1 (PD1) markedly attenuated influenza virus replication via RNA export machinery. Production of PD1 was suppressed during severe influenza and PD1 levels inversely correlated with the pathogenicity of H5N1 viruses. Suppression of PD1 was genetically mapped to 12/15-lipoxygenase activity. Importantly, PD1 treatment improved the survival and pathology of severe influenza in mice, even under conditions where known antiviral drugs fail to protect from death. These results identify the endogenous lipid mediator PD1 as an innate suppressor of influenza virus replication that protects against lethal influenza virus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.