We constructed a molecular model (digital oil model) for heavy crude oil based on analytical data and our newly developed method. Crude oil was separated into four fractions: saturates, aromatics, resins, and asphlatenes (SARA). Although it is classified as a heavy crude oil, the asphaltenes turned out to be at very low weight concentration (~0.4 wt. %), and were ignored in our study. The digital oil was constructed as a mixture of representative molecules of four fractions: saturates, aromatics, resins, and lost components (which resulted from our SARA analysis). Representative molecules were generated by quantitative molecular representation (QMR), a technique that provides a set of molecules consistent with analytical data, such as elemental composition, average molecular mass, and the proportions of structural types of hydrogen and carbon atoms, as revealed by 1 H and 13 C nuclear magnetic resonance. To enable the QMR method to be applicable to saturates, we made two developments: the first was the generation of non-aromatic molecules by a new algorithm that can generate a more branched structure by separating the chain bonding into main and subsidiary processes; the second was that the molecular mass distribution of the model could be fitted to that obtained from experiments. To validate the digital oil thus obtained, we first confirmed the validity of the model for each fraction in terms of plots of double-bond equivalent as a function of carbon number. We then calculated its density and viscosity by molecular dynamics simulations. The calculated density was in good agreement with experimental data for crude oil. The calculated viscosity was higher than experimental values; however, the error appeared systematic, being a factor of ~1.5 higher than that of experiments. Moreover, the calculated viscosity as a function of temperature was well described by the Vogel-Fulcher-Tammann equation. Digital oil will be a powerful tool to analyze both macroscopic properties and microscopic phenomena of crude oil under any thermodynamic conditions.
In situ emulsification/solubilization is an oil recovery technique routinely used to mobilize residual oil after the secondary oil production (waterflooding). The oil is produced after a subsequent reduction of interfacial tension between stranded crude oil and water in the reservoir. Herein, a recovery method is presented for heavy crude oils whose scheme consists of injection of a fully solubilized (or emulsified) oil. Theoretically, the fully solubilized oil, referred hereinafter as microemulsion formulation, reduces the viscous forces that keep residual oil stranded. Different microemulsion formulations were prepared ex situ from two heavy oils (API 11.5 and 16.6), micellar slugs (formulated from cationic Gemini surfactant), and low-saline water (0.1 wt % NaCl). Tertiary heavy oil recovery consisted of displacing residual oil from a waterflooded core by a specific microemulsion formulation followed by low-saline water, which acted as buffer solution. Thirty-one percent of initial oil-in-place (IOIP) was recovered from the waterflooded core by microemulsion followed by an incremental oil recovery of about 20% of IOIP with chase water. The oil recovery efficiency by microemulsion and chase water floodings was lowered to 15 and 28%, respectively, in a strong oil-wet core (i.e., non waterflooded core). Despite the promising results presented herein, the performance of the microemulsion formulations and thus the oil recovery efficiency were found to be strongly dependent on (1) the nature of the core, i.e., its mineralogy, (2) the wetting state of plug, and (3) the chemical composition advancing fluid. The microemulsion formulations prompted a series of chemical reactions which subsequently altered their performance as a displacing agent. Ion tracking analysis of the effluent fractions showed that the pH and concentration in divalent and/or monovalent ions were also altered at each stage of production. When the plug was not waterflooded, the oil was produced along with a deposit of sludge and a high emulsion cut. However, the use of preflush enriched with an alkali (Na2CO3) was found to abate both effects. Furthermore, the spectral analysis of effluent fractions revealed the formation of calcium bridges which are thought to alter the efficiency of microemulsion formulations. Also, a series of chemical schemes are proposed in this investigation to support these results. Lastly, this investigation proposes a simplified electrostatic model that explains further the formation of clusters which were promoted by propagation of displacing fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.