Expression profiles of a set of Cor/Lea genes were assessed during early stages of cold acclimation in seedlings of two wheat cultivars, which showed contrasting levels of freezing tolerance. These Cor/Lea family members consisted of three EST clones and 13 previously identified cDNA clones of wheat and rye. Northern blot analysis using RNA extracted from seedling leaves and roots showed that most of the genes exhibited a quite similar time-course of expression, although with different expression levels: They rapidly responded to low temperature and their transcript levels reached high plateaus within 3-5 days. The overall gene expression profiles were correlated with the time-dependent development and the level of freezing tolerance under low temperature in the two cultivars. Western blot analysis of protein accumulation further verified this observation. Abscissic acid response was proved for at least four genes. Light was stimulatory to most of the genes, and this positive light response associated with low temperature occurred not only in leaf-specific genes but also in leaf/root-expressed genes. Taken together, the present results suggest that the Cor/Lea gene family represents a major group of downstream genes involved in the ABA-dependent and -independent signal pathways and that most of them are co-regulated in determining freezing tolerance in wheat seedlings.
We recently reported that cyclooxygenase (COX)-2 expression was up-regulated in the rat small intestine after administration of indomethacin, and this may be a key to nonsteroidal antiinflammatory drug (NSAID)-induced intestinal damage. In the present study, we investigated the effect of inhibiting COX-1 or COX-2 on various intestinal events occurring in association with NSAID-induced intestinal damage. Rats without fasting were treated with indomethacin, SC-560 (a selective COX-1 inhibitor), rofecoxib (a selective COX-2 inhibitor), or SC-560 plus rofecoxib, and the following parameters were examined in the small intestine: the lesion score, the enterobacterial number, myeloperoxidase (MPO) and inducible nitric-oxide synthase (iNOS) activity, and intestinal motility. Indomethacin decreased mucosal prostaglandin (PG)E 2 content and caused damage in the intestine within 24 h, accompanied by an increase in intestinal contractility, bacterial numbers, and MPO as well as iNOS activity, together with the up-regulation of COX-2 and iNOS mRNA expression. Neither SC-560 nor rofecoxib alone caused intestinal damage, but their combined administration produced lesions. SC-560, but not rofecoxib, caused intestinal hypermotility, bacterial invasion, and COX-2 as well as iNOS mRNA expression, yet the iNOS and MPO activity was increased only when rofecoxib was also administered. Although SC-560 inhibited the PG production, the level of PGE 2 was restored 6 h later, in a rofecoxib-dependent manner. We conclude that inhibition of COX-1, despite causing intestinal hypermotility, bacterial invasion, and iNOS expression, up-regulates the expression of COX-2, and the PGE 2 produced by COX-2 counteracts deleterious events, and maintains the mucosal integrity. This sequence of events explains why intestinal damage occurs only when both COX-1 and COX-2 are inhibited.
Although cytosolic free Ca 2+ mobilization induced by microbe/pathogen-associated molecular patterns is postulated to play a pivotal role in innate immunity in plants, the molecular links between Ca 2+ and downstream defense responses still remain largely unknown. Calcineurin B-like proteins (CBLs) act as Ca 2+ sensors to activate specific protein kinases, CBL-interacting protein kinases (CIPKs). We here identified two CIPKs, OsCIPK14 and OsCIPK15, rapidly induced by microbe-associated molecular patterns, including chitooligosaccharides and xylanase (Trichoderma viride/ethylene-inducing xylanase [TvX/EIX]), in rice (Oryza sativa). Although they are located on different chromosomes, they have over 95% nucleotide sequence identity, including the surrounding genomic region, suggesting that they are duplicated genes. OsCIPK14/15 interacted with several OsCBLs through the FISL/NAF motif in yeast cells and showed the strongest interaction with OsCBL4. The recombinant OsCIPK14/15 proteins showed Mn 2+ -dependent protein kinase activity, which was enhanced both by deletion of their FISL/ NAF motifs and by combination with OsCBL4. OsCIPK14/15-RNAi transgenic cell lines showed reduced sensitivity to TvX/EIX for the induction of a wide range of defense responses, including hypersensitive cell death, mitochondrial dysfunction, phytoalexin biosynthesis, and pathogenesis-related gene expression. On the other hand, TvX/EIX-induced cell death was enhanced in OsCIPK15-overexpressing lines. Our results suggest that OsCIPK14/15 play a crucial role in the microbeassociated molecular pattern-induced defense signaling pathway in rice cultured cells.Calcium ions regulate diverse cellular processes in plants as a ubiquitous internal second messenger, conveying signals received at the cell surface to the inside of the cell through spatial and temporal concentration changes that are decoded by an array of Ca 2+
Vrn-1/Fr-1 chromosomal regions of common wheat possess major QTLs for both winter hardiness (Fr) and vernalization requirement (Vrn). The Vrn-1/Fr-1 intervals are assigned to long arms of the homologous group 5 chromosomes. To investigate the role of the Vrn-1/Fr-1 intervals on the low-temperature (LT) inducibility of wheat Cor/Lea genes and its putative transcription factor gene Wcbf2, LT response of these genes was monitored using near-isogenic lines (NILs) for the Vrn-1 loci. The Wcbf2 transcript accumulated rapidly after LT treatment and remained at a high level in lines without any dominant Vrn-1 alleles. By contrast, the Wcbf2 transcript level was greatly reduced in lines carrying the Vrn-1 alleles. The Vrn-1 NILs accumulated much lower amounts of Cor/Lea transcripts and COR/LEA proteins than the non-carrier line. The observed patterns and levels of gene expression, particularly in the Vrn-A1 NIL, agreed with the higher sensitivity to freezing damage in this line than in the non-carrier line. Up-regulation of the expression of the WAP1 gene, a candidate of the Vrn-1 loci, was much delayed in the non-carrier line than all the NILs carrying the Vrn-1 loci. Neither positive nor negative relationships were found between the WAP1 expression and the Cbf2/Cor/Lea expression. These results support the intimate relationship between the Cbf2/Cor/Lea expression and the level of freezing tolerance, and suggest that a functional Fr-A1 allele linked to the vrn-A1 allele, instead of the vernalization gene itself, plays a major role in regulating the CBF-mediated Cor/lea gene expression in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.