Cholangiocytes secrete VEGF and express VEGFR-2 and VEGFR-3, all of which are amplified in BDL cholangiocytes. VEGF induces cholangiocyte proliferation by activation of inositol 1,4,5-triphosphate/[Ca2+]i/protein kinase C alpha and phosphorylation of Src/ERK1/2. VEGF mediates the adaptive proliferative response of cholangiocytes to cholestasis.
We studied the effect of the inhibitory neurotransmitter, ;-aminobutyric acid (GABA), in the regulation of cholangiocarcinoma growth. We determined the in vitro effect of GABA on the proliferation of the cholangiocarcinoma cell lines (MzChA-1, HuH-28, and TFK-1) and evaluated the intracellular pathways involved. The effect of GABA on migration of Mz-ChA-1 cells was also evaluated. In vivo, Mz-ChA-1 cells were s.c. injected in athymic mice, and the effects of GABA on tumor size, tumor cell proliferation, apoptosis, collagen quantity, and the expression of vascular endothelial growth factor-A (VEGF-A) and VEGF-C (cancer growth regulators) were measured after 82 days. GABA decreased in vitro cholangiocarcinoma growth in a time-dependent and dosedependent manner, by both cyclic AMP/protein kinase A-and D-myo -inositol-1,4,5-thriphosphate/Ca 2+
pini. Administration of r-VEGF-A prevents hepatic artery ligationinduced bile duct damage in bile duct ligated rats. Am J Physiol Gastrointest Liver Physiol 291: G307-G317, 2006. First published March 30, 2006 doi:10.1152/ajpgi.00507.2005.-The hepatic artery, through the peribiliary plexus, nourishes the intrahepatic biliary tree. During obstructive cholestasis, the nutritional demands of intrahepatic bile ducts are increased as a consequence of enhanced proliferation; in fact, the peribiliary plexus (PBP) displays adaptive expansion. The effects of hepatic artery ligation (HAL) on cholangiocyte functions during cholestasis are unknown, although ischemic lesions of the biliary tree complicate the course of transplanted livers and are encountered in cholangiopathies. We evaluated the effects of HAL on cholangiocyte functions in experimental cholestasis induced by bile duct ligation (BDL). By using BDL and BDL ϩ HAL rats or BDL ϩ HAL rats treated with recombinant-vascular endothelial growth factor-A (r-VEGF-A) for 1 wk, we evaluated liver morphology, the degree of portal inflammation and periductular fibrosis, microcirculation, cholangiocyte apoptosis, proliferation, and secretion. Microcirculation was evaluated using a scanning electron microscopy vascular corrosion cast technique. HAL induced in BDL rats 1) the disappearance of the PBP, 2) increased apoptosis and impaired cholangiocyte proliferation and secretin-stimulated ductal secretion, and 3) decreased cholangiocyte VEGF secretion. The effects of HAL on the PBP and cholangiocyte functions were prevented by r-VEGF-A, which, by maintaining the integrity of the PBP and cholangiocyte proliferation, prevents damage of bile ducts following ischemic injury. cAMP; ductal secretion; intrahepatic biliary epithelium; mitosis; microcirculation; secretin CHOLANGIOCYTES, THE EPITHELIAL CELLS lining the intrahepatic biliary epithelium (6), modify bile, originally secreted at the bile canaliculus (43), by a series of absorptive and secretory events regulated by a number of factors including gastrointestinal hormones/peptides, bile salts, and nerve receptor agonists (4 -7, 11, 31, 38). The gastrointestinal hormone secretin increases ductal secretion by interaction with specific receptors (expressed only by cholangiocytes) (10), an interaction that induces an increase in intracellular adenosine 3Ј,5Ј-monophosphate (cAMP) levels (4,7,25,26,31,38). Increased intracellular cAMP levels induce activation of the CFTR Cl Ϫ channels (9, 31) and Cl Ϫ
Chronic cholestatic liver diseases are characterized by impaired balance between proliferation and death of cholangiocytes, as well as vanishing of bile ducts and liver failure. Ursodeoxycholic acid (UDCA) is a bile acid widely used for the therapy of cholangiopathies. However, little is known of the cytoprotective effects of UDCA on cholangiocytes. Therefore, UDCA and its taurine conjugate tauroursodeoxycholic acid (TUDCA) were administered in vivo to rats simultaneously subjected to bile duct ligation and vagotomy, a model that induces cholestasis and loss of bile ducts by apoptosis of cholangiocytes. Because these two bile acids act through Ca2+ signaling, animals were also treated with BAPTA/AM (an intracellular Ca2+ chelator) or Gö6976 (a Ca2+-dependent protein kinase C-alpha inhibitor). The administration of UDCA or TUDCA prevented the induction of apoptosis and the loss of proliferative and functional responses observed in the bile duct ligation-vagotomized rats. These effects were neutralized by the simultaneous administration of BAPTA/AM or Gö6976. UDCA and TUDCA enhanced intracellular Ca2+ and IP3 levels, together with increased phosphorylation of protein kinase C-alpha. Parallel changes were observed regarding the activation of the MAPK and PI3K pathways, changes that were abolished by addition of BAPTA/AM or Gö6976. These studies provide information that may improve the response of cholangiopathies to medical therapy.
Loss of parasympathetic innervation after vagotomy impairs cholangiocyte proliferation, which is associated with depressed cAMP levels, impaired ductal secretion, and enhanced apoptosis. Agonists that elevate cAMP levels prevent cholangiocyte apoptosis and restore cholangiocyte proliferation and ductal secretion. No information exists regarding the role of adrenergic innervation in the regulation of cholangiocyte function. In the present studies, we investigated the role of adrenergic innervation on cholangiocyte proliferative and secretory responses to bile duct ligation (BDL). Adrenergic denervation by treatment with 6-hydroxydopamine (6-OHDA) during BDL decreased cholangiocyte proliferation and secretin-stimulated ductal secretion with concomitant increased apoptosis, which was associated with depressed cholangiocyte cAMP levels. Chronic administration of forskolin (an adenylyl cyclase activator) or beta(1)- and beta(2)-adrenergic receptor agonists (clenbuterol or dobutamine) prevented the decrease in cholangiocyte cAMP levels, maintained cholangiocyte secretory and proliferative activities, and decreased cholangiocyte apoptosis resulting from adrenergic denervation. This was associated with enhanced phosphorylation of Akt. The protective effects of clenbuterol, dobutamine, and forskolin on 6-OHDA-induced changes in cholangiocyte apoptosis and proliferation were partially blocked by chronic in vivo administration of wortmannin. In conclusion, we propose that adrenergic innervation plays a role in the regulation of biliary mass and cholangiocyte functions during BDL by modulating intracellular cAMP levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.