Macroscopic resonant tunneling between the two lowest lying states of a bistable rf SQUID is used to characterize noise in a flux qubit. Measurements of the incoherent decay rate as a function of flux bias revealed a Gaussian-shaped profile that is not peaked at the resonance point but is shifted to a bias at which the initial well is higher than the target well. The rms amplitude of the noise, which is proportional to the dephasing rate 1/tauphi, was observed to be weakly dependent on temperature below 70 mK. Analysis of these results indicates that the dominant source of low energy flux noise in this device is a quantum mechanical environment in thermal equilibrium.
We experimentally confirm the functionality of a coupling element for flux-based superconducting qubits, with a coupling strength J whose sign and magnitude can be tuned in situ. To measure the effective J, the ground state of a coupled two-qubit system has been mapped as a function of the local magnetic fields applied to each qubit. The state of the system is determined by directly reading out the individual qubits while tunneling is suppressed. These measurements demonstrate that J can be tuned from antiferromagnetic through zero to ferromagnetic.
Brillouin scattering and diffracted magneto-optical Kerr effect from arrays of dots and antidots (invited)Angular resolved Auger electron studies were carried out for Fe whisker/Cr͑001͒ interfaces which were prepared at 100, 180, 246, and 296°C. The Cr atoms penetrate progressively into the second ͑counting from the surface͒ atomic layer at 100, 180, and 246°C. At 296°C the Cr atoms enter the third atomic layer. No noticeable fraction of the Cr atoms was found in the fourth atomic layer. The exchange coupling was studied in Fe whisker/Cr/Fe͑001͒ films which were grown in a nearly perfect layer by layer mode. Magneto-optic Kerr effect and Brillouin light scattering measurements showed that the measured change in the phase of the short wavelength oscillations, the presence of a slowly varying exchange coupling bias, and the small measured values of exchange coupling are caused by the same mechanism: interface alloying. The exchange coupling in Fe whisker/Cr/nFe specimens, for nϭ10, 20, 30, and 40 ML, showed no obvious dependence on the Fe layer thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.