The Virgo Experiment is a gravitational wave interferometric detector. It consists in a Michelson interferometer with two 3 km long Fabry‐Perot cavities as orthogonal arms. The installation of the detector has been completed in September 2003 and presently the apparatus is under commissioning. In this article an overview of the detector status is presented
This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. JINST 7 P03012In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency.This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper.
We report on the status of the Virgo detector, under commissioning. We will focus on the last year's activity. The two commissioning runs performed during 2005 allowed us to reach a sensitivity of h ∼ 6 × 10 −22. The data obtained during the runs were used to test a few data analysis algorithms, namely coalescing binaries and burst searches. The main improvements made on the detector during this year will be described, as well as the plans and activities foreseen in the coming years.
The Virgo detector has now finished its first science run; a science mode duty cycle of more than 80% and a 4.5 Mpc horizon distance for binary neutron star inspiral sources were achieved. Commissioning breaks were organized during the run which permitted improvement of the sensitivity and the robustness of the interferometer against environmental perturbations like bad weather and earthquakes. The post-run commissioning phase has now started, with the goal of preparing the next upgrade step of the detector, Virgo+.
The Virgo collaboration has just concluded its first long science run (VSR1). In these four months the detector achieved a good duty cycle, larger than 80%, and an average horizon distance for binary neutron star system sources of about 4 Mpc. An intense commissioning activity was resumed after the run was complete to further increase the performances of the detector and to prepare the Virgo+ upgrades. The detector performances during the first science run and the last commissioning achievements are briefly discussed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.