Y2Ti2O7:Er(3+)/Yb(3+) (EYYTO) phosphors co-doped with Li(+) ions were synthesized by a conventional solid-state ceramic method. X-ray diffraction studies show that all the Li(+) co-doped EYYTO samples are highly crystalline in nature with pyrochlore face centred cubic structure. X-ray photon spectroscopy studies reveal that the incorporation of Li(+) ions creates the defects and/or vacancies associated with the sample surface. The effect of Li(+) ions on the photoluminescence up-conversion intensity of EYYTO was studied in detail. The up-conversion study under ∼976 nm excitation for different concentrations of Li(+) ions showed that the green and red band intensities were significantly enhanced. The 2 at% Li(+) ion co-doped EYYTO samples showed nearly 15- and 8-fold enhancements in green and red band up-converted intensities compared to Li(+) ion free EYYTO. The process involved in the up-conversion emission was evaluated in detail by pump power dependence, the energy level diagram, and decay analysis. The incorporation of Li(+) ions modified the crystal field around the Er(3+) ions, thus improving the up-conversion intensity. To investigate the sensing application of the synthesized phosphor materials, temperature-sensing performance was evaluated using the fluorescence intensity ratio technique. Appreciable temperature sensitivity was obtained using the synthesized phosphor material, indicating its applicability as a high-temperature-sensing probe. The maximum sensitivity was found to be 0.0067 K(-1) at 363 K.
We have studied the luminescence property of CaMoO4:Eu(3+). The emission peaks at 590 ((5)D0→(7)F1) and 613 nm ((5)D0→(7)F2) for Eu(3+) are observed after excitation at 266 nm (i.e. Mo-O charge transfer band). The peak intensity of the latter dominates over the former indicating an asymmetric environment of Eu(3+) in EuO8 polyhedron or parity mixing. Luminescence intensity increases significantly with co-doping of Gd(3+). This is ascribed to energy transfer from Mo-O/Gd(3+) to Eu(3+). Luminescence intensity increases with annealing up to 900 °C due to the extent of decrease of non-radiative rates. Very high asymmetric values (A21) of 12-16 are found indicating a red emitter. As-prepared samples are dispersible in polar solvents like water, ethanol, methanol, dimethyl sulfoxide (DMSO) and ethylene glycol (EG); and among them, optimum luminescence is found in methanol. Polymer film shows red emission. The quantum yields of as-prepared 2 and 10 at% Gd(3+) co-doped CaMoO4:Eu(3+) under 277 nm (UV excitation) are 21 and 80%, respectively.
Tb(3+)-doped CaMoO(4) (Tb(3+) = 1, 3, 5, 7, 10, 15 and 20 atom%) core and core-shell nanoparticles have been prepared by urea hydrolysis in ethylene glycol (EG) as capping agent as well as reaction medium at low temperature ~150 °C. As-prepared samples were annealed at 500 and 900 °C for 4 h to eliminate unwanted hydrocarbons and/or H(2)O present in the sample and to improve crystallinity. The synthesised nanophosphors show tetragonal phase structure. The crystallite size of as-prepared sample is found to be ~18 nm. The luminescence intensity of the (5)D(4) → (7)F(5) transition at 547 nm of Tb(3+) is much higher than that of the (5)D(4) → (7)F(6) transition at 492 nm. 900 °C annealed samples show the highest luminescence intensity. The intensity ratio R (I[(5)D(4) → (7)F(6)]/I[(5)D(4) → (7)F(5)]) lies between 0.3-0.6 for as-prepared, 500 and 900 °C annealed samples. The luminescence decay of (5)D(4) level under 355 nm excitation shows biexponential behaviour indicating availability of Tb(3+) ions on surface and core regions of particle; whereas, contribution of Mo-O charge transfer to lifetime is obtained under 250 nm excitation. The CIE coordinates of as-prepared, 500 and 900 °C annealed 5 atom% Tb(3+)-doped CaMoO(4) samples under 250 nm excitation are (0.28, 0.32), (0.22, 0.28) and (0.25, 0.52), respectively. The dispersed particles in polar medium and its polymer film show green light emission. The luminescence intensity is improved significantly after core-shell formation due to extent of decrease of non-radiative rates arising from surface dangling bonds and capping agent. Quantum yields of as-prepared samples of 1, 5 and 7 atom% Tb(3+)-doped CaMoO(4) samples are found to be 10, 3 and 2, respectively.
A facile auto-combustion route is used for the synthesis of Gd(3+) (2, 5, 7 and 10 at%) co-doped CaMoO4:Eu nanoparticles. X-ray diffraction study suggests that as-prepared samples have extra impurity phases in addition to main tetragonal phase of CaMoO4, and such extra phases decrease as the annealing temperature increases from 600 to 900 °C. The crystal structure has been analysed using Rietveld program. It has space group I4₁/a (88) and Z = 4 (number of CaMoO4 formula units per unit cell). Average crystallite sizes of as-prepared, 600 and 900 °C annealed samples for 2 at% Gd(3+) are found to be ~33, 48 and 61 nm, respectively. The lattice strains of 5 at% Gd(3+) co-doped CaMoO4:Eu for as-prepared and 900 °C are 0.001 and 0.002, respectively. Fourier transform infrared spectroscopy gives the absorption bands at ~815 and 427 cm(-1), which are related to asymmetric stretching and bending vibrations of MoO4(2-) tetrahedron. Particle morphology is studied using scanning and transmission electron microscopy (SEM and TEM), and aggregation of particles is found. X-ray photoelectron spectroscopy (XPS) is utilized to examine the oxidation states of metal ions/oxygen and oxygen ion vacancies in Gd(3+) co-doped CaMoO4:Eu. With an increase in Gd(3+) concentration, peaks corresponding to the Gd(3+) (2p(3/2) and 2p(5/2)) binding energy could be detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.