Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues -a realisation of the Tycho-Gaia Astrometric Solution (TGAS) -and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr −1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr −1 . For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.
We report the discovery of two new ZZ Ceti pulsators, LP 133−144 and HE 1258+0123, selected on the basis of model atmosphere fits to optical spectroscopic data. The atmospheric parameters for LP 133−144, T eff = 11, 800 ± 200 K and log g = 7.87 ± 0.05, and for HE 1258+0123, T eff = 11, 410 ± 200 K and log g = 8.04 ± 0.05, place them within the empirical boundaries of the ZZ Ceti instability strip. This brings the number of known ZZ Ceti stars to a total of 36, a quarter of which have now been discovered using the spectroscopic approach for estimating their atmospheric parameters. This method has had a 100% success
Context. For Gaia DR2, 280 million spectra collected by the Radial Velocity Spectrometer instrument on board Gaia were processed, and median radial velocities were derived for 9.8 million sources brighter than GRVS = 12 mag. Aims. This paper describes the validation and properties of the median radial velocities published in Gaia DR2. Methods. Quality tests and filters were applied to select those of the 9.8 million radial velocities that have the quality to be published in Gaia DR2. The accuracy of the selected sample was assessed with respect to ground-based catalogues. Its precision was estimated using both ground-based catalogues and the distribution of the Gaia radial velocity uncertainties. Results. Gaia DR2 contains median radial velocities for 7 224 631 stars, with Teff in the range [3550, 6900] K, which successfully passed the quality tests. The published median radial velocities provide a full-sky coverage and are complete with respect to the astrometric data to within 77.2% (for G ≤ 12.5 mag). The median radial velocity residuals with respect to the ground-based surveys vary from one catalogue to another, but do not exceed a few 100 m s−1. In addition, the Gaia radial velocities show a positive trend as a function of magnitude, which starts around GRVS ~ 9 mag and reaches about + 500 m s−1 at GRVS = 11.75 mag. The origin of the trend is under investigation, with the aim to correct for it in Gaia DR3. The overall precision, estimated from the median of the Gaia radial velocity uncertainties, is 1.05 km s−1. The radial velocity precision is a function of many parameters, in particular, the magnitude and effective temperature. For bright stars, GRVS ∈ [4, 8] mag, the precision, estimated using the full dataset, is in the range 220–350 m s−1, which is about three to five times more precise than the pre-launch specification of 1 km s−1. At the faint end, GRVS = 11.75 mag, the precisions for Teff = 5000 and 6500 K are 1.4 and 3.7 km s−1, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.