Numerous publications and commercial systems are available that deal with automatic detection of pulmonary nodules in thoracic computed tomography scans, but a comparative study where many systems are applied to the same data set has not yet been performed. This paper introduces ANODE09 ( http://anode09.isi.uu.nl), a database of 55 scans from a lung cancer screening program and a web-based framework for objective evaluation of nodule detection algorithms. Any team can upload results to facilitate benchmarking. The performance of six algorithms for which results are available are compared; five from academic groups and one commercially available system. A method to combine the output of multiple systems is proposed. Results show a substantial performance difference between algorithms, and demonstrate that combining the output of algorithms leads to marked performance improvements.
A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce the false positives (FPs). After having set the parameters on a clinical CT, the system works on whole scans, without the need for any manual selection. The CT database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with 6.6 FPs/CT on 15 CT scans (about 4700 sectional images) with 26 nodules: 15 internal and 11 pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency.
Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image segmentation for the localization of regions of interest (ROIs). This step relies on an iterative dynamical threshold algorithm able to select iso-intensity closed contours around gray level maxima of the mammogram. (b) ROI characterization by means of textural features computed from the gray tone spatial dependence matrix (GTSDM), containing second-order spatial statistics information on the pixel gray level intensity. As the images under study were recorded in different centers and with different machine settings, eight GTSDM features were selected so as to be invariant under monotonic transformation. In this way, the images do not need to be normalized, as the adopted features depend on the texture only, rather than on the gray tone levels, too. (c) ROI classification by means of a neural network, with supervision provided by the radiologist's diagnosis. The CAD system was evaluated on a large database of 3369 mammographic images [2307 negative, 1062 pathological (or positive), containing at least one confirmed mass, as diagnosed by an expert radiologist]. To assess the performance of the system, receiver operating characteristic (ROC) and free-response ROC analysis were employed. The area under the ROC curve was found to be Az = 0.783 +/- 0.008 for the ROI-based classification. When evaluating the accuracy of the CAD against the radiologist-drawn boundaries, 4.23 false positives per image are found at 80% of mass sensitivity.
The MAGIC-5 Project aims at developing Computer Aided Detection (CAD) software for Medical Applications on distributed databases by means of a GRID Infrastructure Connection. The use of automatic systems for analyzing medical images is of paramount importance in the screening programs, due to the huge amount of data to check. Examples are: mammographies for breast cancer detection, Computed-Tomography (CT) images for lung cancer analysis, and the Positron Emission Tomography (PET) imaging for the early diagnosis of the Alzheimer disease. The need for acquiring and analyzing data stored in different locations requires a GRID approach of distributed computing system and associated data management. The GRID technologies allow remote image analysis and interactive online diagnosis, with a relevant reduction of the delays actually associated to the screening programs. From this point of view, the MAGIC-5 collaboration can be seen as a group of distributed users sharing their resources for implementing different Virtual Organizations (VO), each one aiming at developing screening programs, tele-training, tele-diagnosis and epidemiologic studies for a particular pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.