We present an exquisite 30 minute cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi-color Panoramic Survey Telescope (Pan-STARRS1) and Rapid Response System 1 and Cerro Tololo Inter-American Observatory 4 m Dark Energy Camera (CTIO 4-m DECam) observations obtained within hours of explosion. The K2 light curve has an unusual twocomponent shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical supernovae (SNe)Ia. This "flux excess" relative to canonical SNIa behavior is confirmed in our i-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14±0.04 days after explosion, has a FWHM of 3.12±0.04 days, a blackbody temperature of T 17, 500 9,000 11,500 =-+ K, a peak luminosity of 4.3 0.2 10 erg s 37 1 ´-, and a total integrated energy of 1.27 0.01 10 erg 43 ´. We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of ∼2 10 cm 12 based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system.
Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically confirmed Type Ia supernova (SN Ia) observed in the Kepler field. The Kepler data revealed an excess emission in its early light curve, allowing us to place interesting constraints on its progenitor system. Here we present extensive optical, ultraviolet, and nearinfrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3±0.3 days and Δm 15 (B)=0.96±0.03 mag, but it seems to have bluer B−V colors. We construct the "UVOIR" bolometric light curve having a peak luminosity of 1.49×10 43 erg s −1 , from which we derive a nickel mass as 0.55±0.04 M e by fitting radiation diffusion models powered by centrally located 56 Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of 56 Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a nondegenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia but is characterized by prominent and persistent carbon absorption features. The CII features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in an SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers.
The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption 10 times, including yearly eruptions from 2008 to 2014. With a measured recurrence period of = P 351 13 rec days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground-and space-based follow-up programs. In this paper we present the 2015 detection, visible to near-infrared photometry and visible spectroscopy, and ultraviolet and X-ray observations from the Swiftobservatory. The LCOGT 2 m (Hawaii) discovered the 2015 eruption, estimated to have commenced at August 28.28±0.12 UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities ∼13,000 km s −1 ,
We report on multiwavelength observations of nova Small Magellanic Cloud Nova 2016-10a. The present observational set is one of the most comprehensive for any nova in the Small Magellanic Cloud, including low-, medium-, and high-resolution optical spectroscopy and spectropolarimetry from Southern African Large Telescope, Folded Low-Order Yte-Pupil Double-Dispersed Spectrograph, and Southern Astrophysical Research; long-term Optical Gravitational Lensing Experiment V- and I-bands photometry dating back to 6 yr before eruption; Small and Moderate Aperture Research Telescope System optical and near-IR photometry from ∼11 d until over 280 d post-eruption; Swift satellite X-ray and ultraviolet observations from ∼6 d until 319 d post-eruption. The progenitor system contains a bright disc and a main sequence or a sub-giant secondary. The nova is very fast with t2 ≃ 4.0 ± 1.0 d and t3 ≃ 7.8 ± 2.0 d in the V band. If the nova is in the SMC, at a distance of ∼61 ± 10 kpc, we derive MV, max ≃ −10.5 ± 0.5, making it the brightest nova ever discovered in the SMC and one of the brightest on record. At day 5 post-eruption the spectral lines show a He/N spectroscopic class and an Full Width at Half Maximum of ∼3500 km s−1, indicating moderately high ejection velocities. The nova entered the nebular phase ∼20 d post-eruption, predicting the imminent super-soft source turn-on in the X-rays, which started ∼28 d post-eruption. The super-soft source properties indicate a white dwarf mass between 1.2 and 1.3 M⊙ in good agreement with the optical conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.