The most important cooling lines of the neutral interstellar medium (ISM) lie in the far-infrared (FIR). We present measurements by the Infrared Space Observatory Long Wavelength Spectrometer of seven lines from neutral and ionized ISM of 60 normal, star-forming galaxies. The galaxy sample spans a range in properties such as morphology, FIR colors (indicating dust temperature), and FIR/Blue ratios (indicating star-formation activity and optical depth).In two-thirds of the galaxies in this sample, the [C II] line flux is proportional to FIR dust continuum. The other one-third show a smooth decline in L [CII] /L FIR with increasing F ν (60 µm)/F ν (100 µm) and L FIR /L B , spanning a range of a factor of more than 50. Two galaxies, at the warm and active extreme of the range have L [CII] /L FIR < 2 × 10 −4 (3σ upper limit). This is due to increased positive grain charge in the warmer and more active galaxies, which leads to less efficient heating by photoelectrons from dust grains.The ratio of the two principal photodissociation region (PDR) cooling lines L [OI] /L [CII] shows a tight correlation with F ν (60 µm)/F ν (100 µm), indicating that both gas and dust temperatures increase together. We derive a theoretical scaling between [N II](122 µm) and [C II] from ionized gas and use it to separate [C II] emission from neutral PDRs and ionized gas. Comparison of PDR models of Kaufman et al. (1999) with observed ratios of (a) L [OI] /L [CII] and (L [CII] + L [OI] )/L FIR and (b) L [OI] /L FIR and F ν (60 µm)/F ν (100 µm) yields far-UV flux G 0 and gas density n. The G 0 and n values estimated from the two methods agree to better than a factor of 2 and 1.5 respectively in more than half the sources.The derived G 0 and n correlate with each other, and G 0 increases with n as G 0 ∝ n α , where α ≈ 1.4 . We interpret this correlation as arising from Strömgren sphere scalings if much of the line and continuum luminosity arises near star-forming regions. The high values of PDR surface temperature (270 − 900 K) and pressure (6 × 10 4 − 1.5 × 10 7 K cm −3 ) derived also support the view that a significant part of grain and gas heating in the galaxies occurs very close to star-forming regions. The differences in G 0 and n from galaxy to galaxy may be due to differences in the physical properties of the star-forming clouds. Galaxies with higher G 0 and n have larger and/or denser star-forming clouds.
This is the second paper studying the QSOs in the Spitzer QUEST sample. Previously we presented new PAH measurements and argued that most of the observed far-infrared ( FIR) radiation is due to star-forming activity. Here we present spectral energy distributions (SEDs) by supplementing our data with optical, NIR, and FIR observations. We define two subgroups, of ''weak FIR'' and ''strong FIR'' QSOs, and a third group of FIR nondetections. Assuming a starburst origin for the FIR, we obtain ''intrinsic'' active galactic nucleus (AGN) SEDs by subtracting a starburst template from the mean SEDs. The resulting SEDs are remarkably similar for all groups. They show three distinct peaks corresponding to two silicate emission features and a 3 m bump, which we interpret as the signature of the hottest AGN dust. They also display drops beyond $20 m that we interpret as the signature of the minimum temperature ($200 K) dust. This component must be optically thin to explain the silicate emission and the slope of the long-wavelength continuum. We discuss the merits of an alternative model in which most of the FIR emission is due to AGN heating. Such models are unlikely to explain the properties of our QSOs, but they cannot be ruled out for more luminous objects. We also find correlations between the luminosity at 5100 8 and two infrared starburst indicators: L(60 m) and L(PAH 7:7 m). The correlation of L(5100 8) with L(60 m) can be used to measure the relative growth rates and lifetimes of the black hole and the new stars.
The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 μm and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10 11 L IR /L < 10 12 ) and 22 ultraluminous (L IR /L 10 12 ) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 μm polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW 6.2 μm > 0.4 μm) and low levels of silicate absorption (s 9.7 μm > −1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L IR . U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW 6.2 μm < 0.1 μm) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR emission, suggesting that the obscuring (cool) dust is associated with the outer regions of the starburst and not simply a measure of the dust along the line of sight through a large, dusty disk. A marked decline is seen for the fraction of high EQW (star formation dominated) sources as the merger progresses. The decline is accompanied by an increase in the fraction of composite sources while the fraction of sources where an AGN dominates the MIR emission remains low. When compared to the MIR spectra of submillimeter galaxies (SMGs) at z ∼ 2, both the average GOALS LIRG and ULIRG spectra are more absorbed at 9.7 μm and the average GOALS LIRG has more PAH emission. However, when the AGN contributions to both the local GOALS LIRGs and the high-z SMGs are removed, the average local starbursting LIRG closely resembles the starburst-dominated SMGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.